English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 10585145      Online Users : 17463
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/35659


    Title: 以演化法則設計之最佳化模糊控制器及其在移動機器人避障路徑規畫之應用
    Other Titles: Design of an optimal fuzzy controller for mobile robots via an evolutionary approach
    Authors: 黃俊偉;Huang, Chun-wei
    Contributors: 淡江大學電機工程學系碩士班
    許陳鑑;Hsu, Chen-chien
    Keywords: 模糊控制;模糊控制規則;粒子群聚最佳化法;最佳化法;參數調整;移動式機器人;fuzzy controller;fuzzy control rules;particle swarm optimization;Optimization;parameter tuning
    Date: 2009
    Issue Date: 2010-01-11 06:58:09 (UTC+8)
    Abstract: 本文提出一種利用粒子群聚演算法計算得到之最佳化模糊控制器,作法上係透過粒子群聚最佳化演算法以演化方式調整模糊控制器來尋得最佳的控制參數,以協助移動式機器人以最佳路徑行進。
    藉由累積移動距離以及角度累積變化量的兩個目標函數作為粒子群聚演算法演化評估的基礎,在不同模糊控制器的參數中,藉由模擬環境估測移動機器人的這兩項目標函數後,調整最佳化模糊控制器規則中的參數。應用我們所求得的最佳模糊控制器於機器人後,模擬結果顯示,在封閉路徑中可以完成所希望達到的效果。
    In this paper, an optimal fuzzy controller is designed for a mobile robot using a proposed evolutionary approach. Two objective functions, total distance traveled and accumulated angle deviation, are established as the evaluation criteria based on which a particle swarm optimization (PSO) is used to determine an optimal set of the consequent parameters of the ith rule of the fuzzy controller. Simulation results of the mobile robot moving along an enclosed course have demonstrated the effectiveness of the proposed approach.
    Appears in Collections:[電機工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    0KbUnknown488View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback