English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64198/96992 (66%)
Visitors : 7931238      Online Users : 2668
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/35632


    Title: 基於隱藏式馬可夫模型之唇語辨識系統
    Other Titles: A lipreading system based on hidden Markov model
    Authors: 張志瑜;Chang, Chih-yu
    Contributors: 淡江大學電機工程學系碩士班
    謝景棠;Hsieh, Ching-tang
    Keywords: 唇語辨識;隱藏式馬可夫模型;彩度色彩模型;K-means演算法;Lipreading;HMM;chromaticity color space;K-means algorithm
    Date: 2009
    Issue Date: 2010-01-11 06:53:56 (UTC+8)
    Abstract: 傳統使用語音資訊之語音辨識系統,在日常生活中的應用已是很常見的,例如:聲控開關;然而,易受雜音干擾則為此類語音辨識系統之最大弊病,即使能夠選用改良之收音器材,如指向性麥克風,以減少雜音干擾之情形。然而,高昂的成本即為設計此系統要面臨之代價。於是,許多學者針對上述之問題,提出了改良方法,包括:以影像資訊為基礎之語音辨識系統,即唇語辨識系統。唇語辨識系統能夠免除於雜音之干擾,甚至可與以語音資訊為基礎之語音辨識系統結合,能夠有效提昇其辨識率。本研究之目的即為設計一唇語辨識系統,結合彩度色彩空間(chromaticity color space)與K-means演算法(K-means algorithm)作為唇形影像切割方式,進而擷取出唇形特徵,並配合隱藏式馬可夫模型的使用,以提昇唇語辨識系統之辨識率。實驗結果將比較不同色彩空間之唇形切割技術,以及不同特徵之辨識率。
    Nowadays, the conventional speech recognition system has been used in many applications. However, the conventional speech recognition system would be interfered by the voice noise According to the disturbance, the recognition rate would be decreased in the noise condition. So, researchers proposed the singular visual feature speech recognition system, a lipreading system, to avoid the affection of voice noise. The lipreading system can be the assistance part of the conventional speech recognition system, to raise the speech recognition rate. In our research, we proposed a lipreading system which the lip image segmentation part is chromaticity color space combined with K-means algorithm. And taking the Hidden Markov Model as the recognition part to improve the recognition rate. In the experiment results, our method compared with other color based lip segmentation, and compared the recognition rate of different features.
    Appears in Collections:[電機工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    0KbUnknown486View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback