淡江大學機構典藏:Item 987654321/35601
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9304652      線上人數 : 211
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/35601


    題名: Spacecraft formation about a Keplerian orbit
    其他題名: 克普勒型軌道之宇航器編隊飛行探討
    作者: 李欣儒;Li, Shin-ju
    貢獻者: 淡江大學航空太空工程學系碩士班
    蕭富元;Hsiao, Fu-yuen
    關鍵詞: 編隊飛行;軌道控制;局部時間逼近法;克普勒型軌道;formation flight;orbit control;local time approximation;Keplerian orbits
    日期: 2007
    上傳時間: 2010-01-11 06:51:19 (UTC+8)
    摘要: 本論文探討了克普勒型軌道附近相對運動, 並將之應用於宇航器的編隊飛行上。我們首先討論在克普勒型軌道附近的相對運動的力學模型, 一般在討論此等問題時, 通常是採用Tschauner-Hempel Equation (T-H Equation) 來描述。有了飛行器的運動方程式之後, 我們接著探討了“局部時間逼近法(local timeapproximation)” 在這個問題的可應用性。本文證明此控制法則在近圓軌道上亦能對軌道做有效的控制。然後在這個概念下, 本文提出了兩種可能的控制器設計方法-包括在時域進行設計以及利用T-H Equation進行控制器設計; 我們不僅能穩定原本不穩定的相對運動軌道, 並且能夠重現“縮小版”的主軌道。

    由於對軌道施加控制必需額外花費能量, 因此我們也探討了利用自然的週期性相對軌道, 去維持編隊的可能性。我們運用已知的二體問題完整解, 去求出兩條同週期的不同軌道之間的相對位置方程式, 再加以簡化。這個方法可以避免去解線性化之後的常微分方程, 並且得到了一個比直接去積分T-H Equation 更精確的解。我們可以把這個結果應用到宇航器的編隊, 並能降低維持編隊所需要的油耗。最後, 我們也利用數值模擬的方法來驗證我們的結果的正確性。
    This thesis investigates relative trajectories about a Keplerian orbit with potential applications to the formation flight of spacecraft. We first consider a spacecraft formation about a nominal Keplerian orbit, whose dynamics is usually described by the Tschauner-Hempel Equation (T-H Equation). Briefly reviewing the results from the T-H Equation, we analytically prove the applicability of the “local time approximation” to the T-H Equation. With the guidance of local time approximation, we propose potential design methods of control law both in the time domain and in the true-anomaly domain. By designing the control law in the true-anomaly domain, we not only stabilize the unstable relative trajectory, but also“re-construct” the “scaled” nominal orbit for our formation of spacecraft.

    We also present another methodology for determining relative motion initial conditions for periodic motion in the vicinity of a Keplerian orbit. In this method the spacecraft relative dynamics is derived by subtracting two neighborhood orbits, and simplifying the results. Our work avoids solving the linearized differential equations, and provides a more precise approximation to the relative motion than the T-H Equation did. This result can be used for lowering down the fuel usage for relative orbit maintenance. Numerical simulations are also presented to verify our results.
    顯示於類別:[航空太空工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown370檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋