淡江大學機構典藏:Item 987654321/35596
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62830/95882 (66%)
造访人次 : 4047881      在线人数 : 600
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/35596


    题名: 輕型運動航空載具起落架關鍵負載分析
    其它题名: The critical loading analysis of light-sport aircraft landing gear
    作者: 陳建銘;Chen, Chan-ming
    贡献者: 淡江大學航空太空工程學系碩士班
    陳步偉;Chen, Pu-woei
    关键词: 輕型運動航空載具;起落架;有限元素法;Light-Sport Aircraft;Landing Gear;Finite Element Method
    日期: 2008
    上传时间: 2010-01-11 06:50:30 (UTC+8)
    摘要: 本研究藉由有限元素法建立分析輕型運動航空載具關鍵性組件的負載能力,以降低發展設計輕型運動航空載具過程中的開發時間。藉由以Zenith STOL CH 701的主起落架作為模擬測試對象,建立以有限元素分法為基礎的靜態及動態掉落測試,並以此動靜態模擬測試環境分析STOL CH 701 起落架結構,取得並討論在動態及靜態負載下測試的結果。本研究藉由一系統化分析流程,由原始設計資料,在簡化幾何外型後建立起落架有限元素模型,並討論由原始設計資料、法規限制、負載狀況,建立在邊界條件的相關資料,依此完成靜態及動態模擬測試環境。比較在六面體元素(3924個元素)簡化為薄殼元素(1944個元素)的正確性後,將有限元素模型更改為薄殼元素,並由此藉由靜態模擬測試取得原始設計(T=20mm)及在更改設計參數(T)為15mm、25mm後,起落架最大負載能力:原始設計(T=20mm)為1220kg,T=15mm為700kg,T=25mm為1900kg。
    在動態模擬測試方面,藉由動能-位能變化、沙漏形變、接觸狀況驗證在動態模擬測試之正確性,再藉由此動態模擬測試取得在碰撞過程中最大應力值及發現位置,並修改設計參數,比較在不同設計參數下碰撞過程中最大應力狀況,取得在原始設計下最大應力276MPa及T=15mm時最大應力281MPa、T=25mm時最大應力275 MPa,驗證原始設計參數為較適合的設計參數。本研究所建立之分析流程及在靜態、動態下分析結果驗證方式及結果,可作為相關業者及研究者在開發及分析輕型運動航空載具過程中一個重要的參考。
    This research dependent on Finite Element Method to building up analyzing ability of light sport aircraft critical parts loading capability to reduce exploitation time of developing light-sport aircraft design. By using the main landing gear of Zenith STOL CH 701 as simulate test object, construct the static analyze and dynamic drop test base on the Finite Element Method, and use the static/dynamic tests to analyze landing gear structure of STOL CH 701, obtain and discuss the results under the static/dynamic tests. This research use a systematize analyze process, construct the finite element model after reduce the geometry under the original design data, and discuss original design data, rule constrain, loading condition to construct the data of boundary condition, accord these discuss to finish the static/dynamic simulate test environment. After compare and verify the hexahedral element (3924 elements) and reduce it to shell element ( 1944 elements) ,change the finite element model to shell element, and use the static test obtain original design (T=20mm) and modify the design parameter to 15mm, 25mm, landing gear maximum loading ability: original design (T=20mm) is 1220kg, T=15mm is 700kg, T=25mm is 1900kg. In dynamic simulate test, verify the accuracy by the changes of dynamic energy and internal energy, hourglass deform, contact state. After, use this dynamic simulate test obtain the maximum stress and position during crash process, modify the design parameter and compare the maximum stress, detect the maximum stress is 276 MPa under the original design and T=15mm, maximum Stress is 281 MPa, T=25mm, maximum stress is 275 MPa, verify the original design parameter is appropriate design parameter. This research construct analyze process and verify method and result, provide an important reference to related industry and researcher in the process of developing and analyzing light-sport aircraft.
    显示于类别:[航空太空工程學系暨研究所] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    0KbUnknown308检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈