English  |  正體中文  |  简体中文  |  Items with full text/Total items : 56555/90363 (63%)
Visitors : 11839579      Online Users : 111
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/35533

    Title: 含界層裂紋之雙異質壓電材料在半雙曲線近似下之暫態解析
    Other Titles: Transient analysis of an interface crack in piezoelectric bimaterials due to quasi-hyperbolic approximation
    Authors: 陳彥廷;Chen, Yen-ting
    Contributors: 淡江大學航空太空工程學系碩士班
    應宜雄;Ing, Yi-shyong
    Keywords: 暫態;界面裂紋;應力強度因子;壓電材料;piezoelectric material;interface crack;stress intensity factor
    Date: 2009
    Issue Date: 2010-01-11 06:44:57 (UTC+8)
    Abstract: 本文研究內含電極邊界之界面裂紋的壓電複合材料動力破壞問題,解析一含半無限長界面裂紋之六角雙異質壓電材料複合層板,於裂紋面上施加反平面動力點載荷在有限光速影響下之暫態效應,本文利用積分轉換法與Wiener-Hopf技巧推導壓電材料於拉普拉斯轉換域中之基本解,接著利用疊加的技巧求得一次拉普拉斯轉換域中之解,最後在使用Cagniard-de Hoop Method來做拉普拉斯逆轉換得到時域中的全場暫態解析解,並求出應力強度因子與電位移強度因子等解析解。最後,將針對應力與電位移之暫態解作數值計算與討論。
    In this study, the transient response of a semi-infinite interface crack due to Quasi-hyperbolic approximation between two dissimilar piezoelectric materials with the electrode boundary condition is investigated. The useful fundamental solutions are derived and the solutions can be determined by superposition of the fundamental solutions in the Laplace transform domain. The proposed fundamental problem is the problem of applying exponentially distributed traction (in Laplace transform domain) on the interface crack faces. The Cagniard-de Hoop method of Laplace inversion is used to obtain the transient solution in time domain. Exact transient Full-Field solution and exact transient solution of intensity factors to the problem with concentrated loads are derived. Finally, numerical results are evaluated and discussed in detail.
    Appears in Collections:[Graduate Institute & Department of Aerospace Engineering] Thesis

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback