English  |  正體中文  |  简体中文  |  Items with full text/Total items : 56804/90523 (63%)
Visitors : 12092588      Online Users : 89
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/35530

    Title: 直接甲醇燃料電池之性能分析與系統設計
    Other Titles: The performance analysis and system design on the direct methanol fuel cell
    Authors: 張靜怡;Chang, Jing-yi
    Contributors: 淡江大學航空太空工程學系碩士班
    李世鳴;Lee, Shi-min
    Date: 2005
    Issue Date: 2010-01-11 06:44:43 (UTC+8)
    Abstract: 近年來隨著石油價位的飆漲,造成經濟的波動,使人回憶起過去石油危機的憂患意識,因此有許多國家、公司和學校投資了龐大的人力與金錢,進而尋找開發新能源技術,其中直接甲醇燃料電池在可攜式電子電力產品之應用便是發展重點之一。
    An effective alternate energy resource has been urgent acquired because of the energy crisis in the world. Therefore, many country, company, or institutes invest a lot of people and money in the development of new energy technologies. The direct methanol fuel cell (DMFC) is prominent to be highly considered the application in the future portable electronics.
    The mainly object of this thesis is to illustrate how to design a stable, high performance, and practical DMFC. The first part of this paper is to develop an automatic diagnostic system. The developed system consists of measuring and control parts. The information of voltage, current, power, and temperature of the DMFC could be measured and recorded by the system; the system could also make the controls of the fuel inlet temperature, cathode airflow inlet environment temperature, and DC loading machine.
    The second part of this paper is to make the parametric studies on the operating environment as well as the concentration effect to a single-cell DMFC by utilizing the diagnostic system. The environment studies adopted the Taguchi’s method to figure out a better operation condition. The comparison of a DMFC performance under several different methanol concentrations at several specific operating conditions was conducted to get a good concentration range.
    In addition, the last part of the thesis is to apply the computational fluid dynamic technique to make a series of designs on the anode and cathode side flow channels. The design on the anode side emphasized the uniformity of the fuel supplying to the cells in the planar DMFC stack, where the non-uniformity could significantly decrease the DMFC performance. The design on the cathode side focused on the uniformity of the airflow velocity, pressure, and temperatures aside of the cells. The ultimate purpose of the research is to provide the methodology to make a good DMFC design under proper operating conditions by integrating the experimental and simulation results.
    Appears in Collections:[Graduate Institute & Department of Aerospace Engineering] Thesis

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback