淡江大學機構典藏:Item 987654321/35466
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62805/95882 (66%)
Visitors : 3925873      Online Users : 745
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/35466


    Title: 微機電順從機構的拓樸最佳化及設計
    Other Titles: Topological optimization in compliant mechanisms for micro-electro mechanical system
    Authors: 林志豐;Lin, Chih-feng
    Contributors: 淡江大學機械與機電工程學系博士班
    史建中;Shih, Chien-jong
    Keywords: 順從機構;拓樸最佳化;微機電系統;機械設計;結構最佳化;工程設計;有限元素分析;撓性接頭;compliant mechanism;topology optimization;micro-electro mechanical system;mechanical design;Structural optimization;Engineering design;finite element analysis;flexural hinge.
    Date: 2006
    Issue Date: 2010-01-11 06:37:03 (UTC+8)
    Abstract: 本文系統的分析拓樸最佳化的相關技術及應用拓樸最佳化技術於順從機構設計。對於順從機構的拓樸狀態出現類接頭的不合理結構形態,從虛似剛體模型法的等效撓性接頭設計方向切入,以撓性接頭力學分析為基礎,研究此方法,發展順從機構的多目標最佳化數學模型,得到更佳的輸入位移與輸出位移增益比效果。接著本文再提出應用拓樸最佳化的結果為初始形態,發展撓性接頭多目標最佳化設計,整合成有效的順從機構設計方法,合理的將拓樸類接頭形態設計成明確而機械型撓性接頭,結果得知,結合拓樸最佳化及撓性接頭順從機構設計的方法優於傳統虛似剛體設計方法。經由比較後發現,類接頭拓樸形態中心位置實為本文之機械型撓性接頭對稱圓孔連心線中心位置。因此,本文提出簡化類接頭之再設計改善策略,發展簡化的撓性接頭最佳化。同時應用此簡化設計策略於本文發展的力致動與熱變形微機電順從機構上。本文提出的最佳化設計方法論,也成功地應用至不同的微機電順從機構元件設計。
    A systematic analysis and study concerning the techniques of the topological optimization applying to compliant mechanisms synthesis are presented in this thesis. During the structural topology optimization, a singular hinge-like appears and then requires to be eliminated or be further modified. A pseudo-rigid-body model had been studied at first, then the typical flexural hinge analysis had been applied and transformed to a multiobjective optimization design model for improving the characteristics of flexural joints. The presented optimization process can obtain superior results than the conventional multi-stage optimization, particularly, the ratio of output motion to input motion on a compliant mechanism has been improved. This study adopts the outcome of the topological optimization as the initial model, then combines the proposed multiobjective optimization strategy for eliminating the unrealistic hinge-like phenomenon. This post-design process not only can deal with flexures but also can dramatically increase the overall performance of the compliant structure. It can be concluded that the geometrical center of a typical flexure exactly is the center of a hinge-like location that was observed and experimented from topology optimization. Eventually, this work continuously proposed a simplifying design model to redesign the flexures for promoting the overall performance. The proposed design method and process had been applied to several micro electro-mechanical structural design included a thermal-actuated amplifying compliant mechanism.
    Appears in Collections:[Graduate Institute & Department of Mechanical and Electro-Mechanical Engineering] Thesis

    Files in This Item:

    File SizeFormat
    0KbUnknown258View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback