English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52047/87178 (60%)
Visitors : 8689540      Online Users : 262
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/35418

    Title: 金屬板材方杯深引伸成形極限之動顯函有限元素分析
    Other Titles: The explicit dynamic finite element analysis of forming limit in the square-cup deep drawing process of sheet metal
    Authors: 鄧維明;Teng, Wei-ming
    Contributors: 淡江大學機械與機電工程學系碩士班
    李經倫;Li, Ching-lun
    Keywords: 動顯函有限元素;方杯引伸;極限引伸比;Dynamic-explicit finite element;Square cup drawing;Limit drawing ration;Forming limit
    Date: 2006
    Issue Date: 2010-01-11 06:30:35 (UTC+8)
    Abstract: 本文係利用動顯函有限元素分析程式,結合Hill的異向性降伏準則,來進行金屬板材方杯引伸成形製程之成形極限分析,並探討方杯引伸成形之沖頭負荷與衝程關係、應變分佈、變形歷程、工件厚度變化及成形極限等,並設計一組方形模具加以實驗,以驗證此有限元素分析程式的可信度。
    The objective of this study was to analyze the forming limit of the square cup drawing process by using the dynamic-explicit finite element program based on the Hill’s anisotropic yield criterion. Simulation results included the relationship between punch load and punch stroke, the distribution of the strain, the deformation history, the variation of the workpiece thickness, and the forming limit. A set of tools was designed for experiment to verify the reliability of the program.
    The present study discussed the square cup drawing process by changing the geometric size of tools. According to the simulation and the experiments results, the minimum thickness was concentrated on the contact regions between workpiece and punch corners. The maximum punch load decreased as the die arc radius and punch radius became larger. With the same of initial blank diameter, larger die arc radius and punch radius would get larger minimum thickness value after deep drawing. According the definition of limit drawing ratio (LDR), when the die arc radius increased from R4.0mm to R12.0mm, LDR would increase from 2.514 to 2.632. When the punch radius increased from R4.0mm to R12.0mm, LDR would increase from 2.548 to 2.608. In the five sets of different tool clearance, the sequence of LDR was C=1.25t, C=2.19t, C=1.56t, C=1.1t and C=1.08t. And the simulation result also showed good agreement with the experiments and therefore the dynamic-explicit finite element program can estimate the forming limit of the square cup drawing process reasonably.
    Appears in Collections:[機械與機電工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback