English  |  正體中文  |  简体中文  |  Items with full text/Total items : 58323/91877 (63%)
Visitors : 14331821      Online Users : 127
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/35383

    Title: 拍撲式微飛行器之製作改良及其飛行訊息傳輸之整合
    Other Titles: Improvement on the flapping MAV and the integration of air data transmission
    Authors: 馮國華;Feng, Guo-hua
    Contributors: 淡江大學機械與機電工程學系碩士班
    楊龍杰;Yang, Lung-jieh
    Keywords: 拍撲式微飛行器;parylene翼膜;PVDF;RF無線傳輸模組;Flapping MAV;PVDF;Radio frequency wireless transmission module
    Date: 2007
    Issue Date: 2010-01-11 06:27:50 (UTC+8)
    Abstract: 本研究前半部利用微機電系統技術製作拍撲式微飛行器之聚對二甲苯(parylene)機翼薄膜與鈦合金機翼,並結合非微機電製程製作之拍撲式傳動機構、機身骨架與尾翼,成為全機重6gw以下,翼展尺寸為16cm之拍撲式飛行器。並放置於風洞內進行升力及推力量測進行討論。
     本研究另使用聚乙烯氟化物(PVDF)壓電薄膜材料,製作拍撲式機翼結構於風洞測試中進行現地量測(on-site lift measurement),並將機翼之壓電輸出訊號與風洞測力計升力訊號,進行比對探討。
    This research utilized MEMS technology layering parylene film as the wing skin and titanium alloy as the wing skeleton. The transmission system with reduction ratio of 26.6 is also fabricated. The total mass of the flapping MAV is less than 6 grams and the wing span is 16 cm. Then we measured and discussed the lift and thrust force of the MAV at the wind tunnel test.
    The signals from a load cell in the wind tunnel and a PVDF sensor embedded in parylene wings are acquired simultaneously. Both of the lift signals from the PVDF and the load cell are basically similar with the same flapping frequency and with the qualitative behavior.
    In addition, we successful measured the temperature changes byutilizing a commercial Radio frequency wireless transmission module in our daily living. We set the module and monitored temperture changes in a pressure test chamber. We expect this module to combine with our MAV, and receive the aerodynamic signals to detect the gesture of the MAV during flying. The final goal of this research is to accomplish the real time MAV monitoring in the sky.
    Appears in Collections:[Graduate Institute & Department of Mechanical and Electro-Mechanical Engineering] Thesis

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback