淡江大學機構典藏:Item 987654321/35381
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64191/96979 (66%)
造訪人次 : 8504911      線上人數 : 7930
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/35381


    題名: 以全方位視覺之特徵掃描比對方法進行機器人自我定位
    其他題名: Robot self-localization using feature scan matching with an omni-directional vision
    作者: 陳敬宏;Chen, Jing-hong
    貢獻者: 淡江大學機械與機電工程學系碩士班
    王銀添;Wang, Yin-tien
    關鍵詞: 全方位視覺;蒙地卡羅自我定位方法;omni-directional vision;Monte Carlo localization
    日期: 2007
    上傳時間: 2010-01-11 06:27:42 (UTC+8)
    摘要: 本論文規劃足球機器人的蒙地卡羅自我定位方法,所使用的機器人具備全方位視覺與全方位驅動輪。運動模型方面,以全方位驅動裝置的反向運動矩陣相對時間積分,搭配回授的里程計訊息建立運動模型。感測模型方面,以機器人位置為中心,規劃全方位影像徑向的像素掃描線。將像素掃描線偵測到的特徵,以高斯分佈方式建立感測模型的比對資料庫。機器人行進中執行自我定位時,交互使用運動模型與感測模型修正機器人在環境中的位置信念(position belief)。
    In this thesis, we use Monte Carlo localization (MCL) algorithms to solve the self-localization problem for robots and apply to soccer robots which have an omni-directional vision system and an omni-directional-driven mechanism. The differential kinematics equation for the omni-directional drive is derived to construct the motion model of MCL. In the motion model, an optical encoder is utilized as the odometer sensor. For the sensor model of MCL, an omni-directional vision system is mounted on the center of the robot to detect color features of the environment. The database of the color features is built for the feature scan matching by adopting the method of mixture probability distribution. After the MCL algorithms are developed, the robot system can locate its position in the environment by updating its position belief recursively, according to the motion model and the sensor model of MCL algorithms.
    顯示於類別:[機械與機電工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown364檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋