English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51776/87004 (60%)
Visitors : 8384362      Online Users : 87
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/35301

    Title: DSP主控之四節機器人運動控制
    Other Titles: DSP based motion control for four-link robot
    Authors: 廖培丞;Liao, Pei-cheng
    Contributors: 淡江大學機械與機電工程學系碩士班
    楊智旭;Yang, Jr-syu
    Keywords: 四節機器人;模糊;類神經;質量重心;Four-link Robot;Fuzzy Control;Artificial Neural Network (ANN);Center of Gravity(COG)
    Date: 2007
    Issue Date: 2010-01-11 06:20:08 (UTC+8)
    Abstract: 本論文主要目的是研究及控制四節機器人,以DSP晶片來實現控制四節機器人行為,藉由其對伺服馬達的控制來完成平面及斜坡站立,及在機構配重改變時嘗試在未知重心位置時,完成機器人所規劃的動作。
    The objective of this thesis is to develop and control a four-link robot. A DSP chip is used to control the motion of this robot. The four-link robot will stand up vertically and stably on the horizontal and inclined surface with unknown loading on one of the link. The robot will execute the planned motion by controlling the servo motor based on the unknown COG position.
    The robot is composed of three servo motors, four unequal-length links and a tilt sensor. There are three joints and four links in the robot structure. The length of this robot is symmetric with respect to the second joint. The outside links are short, and inside links are long. The tilt sensor is used to measure the inclination angle of the robot. The encoders are applied to measure rotational angles and velocities of motors. The DSP is the major controller of the system, which includes artificial neural network(ANN) algorithm, fuzzy control algorithm, motor control, A/D converter and signal process etc. The simulated results indicate that the four-links robot is able to stand up by itself on the horizontal and inclined surface with unknown loading on one of the link.
    Appears in Collections:[機械與機電工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback