English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52068/87197 (60%)
Visitors : 8911204      Online Users : 246
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/35290

    Title: 快速微影製作次微/奈米金屬模仁暨UV膠壓印成型
    Other Titles: Fast lithography for fabricating metallic sub-micro/nano-stamps and forming of UV resins using imprinting method
    Authors: 鄭寶佑;Cheng, Pao-yu
    Contributors: 淡江大學機械與機電工程學系碩士班
    林清彬;Lin, Ching-bin
    Keywords: 奈米壓印;相變化;飛秒雷射脈衝;光熔化;蝕刻;田口實驗法;Nanoimprint;Phase change;Femtosecond laser pulse;Photomelting;Etching;Taguchi method
    Date: 2005
    Issue Date: 2010-01-11 06:19:21 (UTC+8)
    Abstract: 本研究提出一種新穎的製程以製作大面積之微/奈米金屬模仁,其做法係在矽基板上以直流式真空濺鍍一層厚度為400nm及表面粗糙度為0.87nm之Ge2-Sb2-Te5相變化薄膜。利用飛秒雷射脈衝進行曝光,經由穿透光罩到該相變化薄膜表面上,使其產生結晶與非結晶的相變化區域,其中熱擴散長度小於1nm,之後得到二維結晶區的微/奈米不同幾何圖案。由於結晶區與非結晶區之物理與化學性質差異,藉由蝕刻方式將結晶區給予溶蝕,因而製得微/奈米模仁,其最小圖案尺寸與最大蝕刻深度分別為600nm與140nm。其中硝酸及乙醇混合液蝕刻後所得到模仁之表面形態,其圖案輪廓完整成形,於模仁溝槽處的側壁有良好的垂直度,且模仁表面與溝槽處的表面粗糙度均於5nm以下,在溝槽底部趨近平整。此外,應用田口實驗計劃法尋找在降低表面粗糙度的條件下,所獲得最佳化蝕刻參數為:曝光時間1min、腐蝕濃度30%及腐蝕時間1min。最後將SU-8光阻塗佈於Ge2-Sb2-Te5微/奈米模仁上,以轉印方式成功複製高分子圖案。
    We proposed a novel method to fabricate metallic micro/nano-stamp with large area for nanoimprinting in this study. First thin films of Ge2Sb2Te5 with 400nm thickness and 0.87nm surface roughness were deposited at room temperature on silicon substrates by DC sputtering system. Surface of the phase change film is then irradiated with femtosecond laser pulse through the photomask to induce the crystalline mark and amorphous area, and the thermal diffusion length of GST film is less than 1nm. Then we get 2D crystalline micro/nano patterns with different geometric shapes. As the variance of physical and chemical properties between the amorphous area and crystalline mark, micro/nano stamps whose crystalline mark be etched can be generated by adapting etching process, which the smallest size is 600nm and the deepest etching depth is 140nm. The surface morphology of the mold etched with etchant of nitric acid and ethanol, it can be observed that shape of the patterns formed completely, the side wall of trench shown is fairly vertical. The observed roughness of surface and bottom of the mold by AFM cross section is under Ra 5nm, and the bottom of the trench is fairly smooth. Under the condition of reducing surface roughness, by using Taguchi methods optimized etching parameters were found to be exposing time of 1min, etching concentration of 30%, and etching time of 1min.Finally, SU-8 resist is spin coated on micro/nano stamps of Ge2Sb2Te5, and the polymeric patterns were successful replicated by imprinting.
    Appears in Collections:[機械與機電工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback