English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9306764      線上人數 : 936
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/35250


    題名: 使用支援向量迴歸分析股票市場
    其他題名: Analysis of stock market data using SVM
    作者: 蘭宜昌;Lan, Yi-chang
    貢獻者: 淡江大學資訊工程學系碩士在職專班
    蔡憶佳
    關鍵詞: 支援向量機;支援向量;支向機;嵌入維度;時間序列;報酬序列;學習機器;Support Vector Machine;Support Vector;SVM;SVR;Embedded Dimension;Time Series;Return Series;Learning Machine
    日期: 2006
    上傳時間: 2010-01-11 06:15:40 (UTC+8)
    摘要:   投資股票市場是一種滿熱門的投資管道,但卻存在著許多影響股價的各種因素。在資訊科技不斷發展之下,已有許多學者嘗試以各種理論與方法來預測股票市場的未來走勢,其中以人工智慧方法最為引入注目。
      支援向量機(Support Vector machine, SVM)是一種基於結構風險最小化的新穎學習機器演算法。由於它具有許多吸引人的特性以及可靠的經驗效能,因此有越來越多學者將它應用到各個領域中。
      本研究嘗試以支援向量機為分析工具,運用於台灣股票市場。以股市加權指數為樣本,利用嵌入維度切割股價指數報酬序列,並透過支援向量機來建構分析模型,產生股價指數之漲跌預測正確率,同時呈現訓練資料多寡對其影響。
      研究結果顯示,在一般的情況下,台灣股票市場指數波動是隨機的。本研究得知,在訓練資料數量方面,長期的訓練資料並無明顯注於未來預測;反之,中短期數量的訓練資料較能抓住未來走勢。
      Stock market is a popular financial tool. There are many factors that affect stock prices. Computer technology has been constantly improving, and there is a growing interest in applying more sophisticated mathematical tools in studying the stock market.
      Support Vector Machine (SVM) based on structural risk minimization theory is a modern algorithm of learning machine. Lots of scholars apply SVM to different kinds of problems due to many attractive features and promising empirical performance.
      In this paper, we try to use SVM as an analytical tool and apply it for analyzing Taiwan stock market. Return series constructed from The Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) time series and cutting by embedded dimension are regarded as the original data. Support vector machine is applied to construct analytical model for the stock index fluctuation simulation.
      Results reveal that the fluctuation of TAIEX is random walk in general. In amount of training history data, it shows that long training data period is not strikingly helpful to predict the trend of the stock index, but using medium-term or short-term training data is good for catching the future stock index''s tendency.
    顯示於類別:[資訊工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown334檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋