English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 55241/89544 (62%)
造訪人次 : 10729924      線上人數 : 30
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/35215


    題名: Real-time dynamic background segmentation based on multiple reference value model
    其他題名: 根據多重參考值模型之即時動態背景切割
    作者: 彭建文;Peng, Jian-wen
    貢獻者: 淡江大學資訊工程學系博士班
    洪文斌;Horng, Wen-bing
    關鍵詞: 背景切割;參考背景模型;Background segmentation;reference background model
    日期: 2007
    上傳時間: 2010-01-11 06:11:27 (UTC+8)
    摘要: 在此論文中,對於參考背景的建立與維持提出了可靠且更準確的方法。背景的切割對於影像監視系統與相關的應用是很重要的,因為要辨識出目標﹙前景﹚之前,必須先知道在場景中哪些是前景而哪些是屬於背景。因此第一個步驟是替被偵測的場景建立一個參考背景模型,如此才能根據此參考背景擷取出前景。
    在現有的文獻中,在參考背景中的每一個像素都只有一個真實背景的參考值,而在此論文中所提出的multiple reference value background model (MRV background model)中的每一個像素卻有多個參考值,因此即使是再複雜或是紊亂的場景也能被正確地建立參考背景。
    背景切割中的另一個重要的步驟是背景的更新。因為被偵測的環境會一直在改變,例如移動的雲的影子或建築物的影子。因此參考背景也必須被修改以反映這些變化。否則,錯誤的前景就會因此產生。然而,這些會影響場景的因素卻很少被討論。在此論文中,全域更新與區域更新兩種策略一起被用來處理背景的更新;分別負責全部與部分的參考背景修改。因此MRV背景參考模型比其他的背景模型能正常運作更長的時間。此外,影響正確前景切割的因素也被詳細地探討。
    從實驗得知,MRV背景參考模型比其他的背景模型能得到更精確的參考背景與更詳細的前景細節。除此之外,由於可靠的背景更新策略,使得系統不僅能在白天與晚上正常運作,對於攝影鏡頭與場景中背景物體的晃動也有很好的抑制能力。
    In this thesis, we proposed a reliable and precise method for building and maintaining the reference background of a detected environment. Background segmentation (sub-traction) plays an important role in video surveillance systems and related applications. In order to extract the specific targets, applications must recognize what are objects (foreground) and what are not. Therefore, the fist step in such systems is usually to build a reference background model for the detected scene, and then the foreground can be extracted by comparing with the reference background model.
    In the existing literature, each pixel of a reference background model has only one reference value to the real background of the detected scene. However, each pixel in the proposed multiple reference value (MRV) background model may have multiple reference values. Thus, even in complex or disorder scenes, reference backgrounds can also be correctly built.
    Updating reference background is another important step for background segmen-tation. Because the detected scene will be changed, such as moving shadows of clouds or buildings, the reference background model must be modified to reflect these varia-tions. Otherwise, such applications will result in erroneous foreground segmentations. However, the situations of causing erroneous foreground segmentations are seldom discussed.
    In this thesis, a global update and a local update methods are employed as the strategies for a reference background update; they control the entire and partial modi-fication of a reference background model, respectively. Therefore, the reference back-ground model can be used more robust than other proposed models for a long period of surveillance. In addition, the situations of causing erroneous foreground segmentations are also discussed in details.
    By experimental results, the proposed method can obtain a more precise reference background model and preserves more details of a segmented foreground. Moreover, because of the reliable update strategies, the system can operate normally at daytime and nighttime. In addition, the system also can resist camera and object shaking.
    顯示於類別:[資訊工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown291檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋