English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9308025      線上人數 : 2173
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/35159


    題名: 強健性區域特徵應用於物件辨識
    其他題名: Efficient wavelet-based scale invariant features for object recognition
    作者: 林楠傑;Lin, Nan-chieh
    貢獻者: 淡江大學資訊工程學系碩士班
    顏淑惠;Yen, Shew-huey
    關鍵詞: 比對;離散小波轉換;主要比例;比例不變性;極座標轉換;特徵點描述子;Matching;discrete wavelet transform (DWT);dominate scale (DS);scale invariance;log-polar transform;feature point descriptor
    日期: 2009
    上傳時間: 2010-01-11 06:05:34 (UTC+8)
    摘要: 物件辨識的方式有很多,其中常被人使用的方式為偵測物件特徵點然後對特徵點進行比對。然而影像常常會有旋轉、縮放或是平移的變動,因此在偵測特徵點的同時會受到這些變動的影響。本研究的目的在於找尋物件或是影像的特徵點及其特徵向量並且具有強健性,在影像經過變動之後仍然具有不變性。
    本研究利用DWT找出特徵點,接著使用log-polar轉換使特徵具有角度的不變性,利用亮度的差值決定特徵向量的內容以抵抗亮度的改變,最後利用幾何學相似三角形的原理提升比對的正確率。
    在實驗中與CCH[1]做比較,確實提昇了Scaling不變性的效果,另外對於亮度變化以及模糊化也有不錯的表現,此外其他的實驗和CCH[1]有著類似的結果。在時間上,跟CCH相差甚少,也就是說相較於SITF[3]快了近兩倍之多。
    Feature points’ matching is a popular method in dealing with object recognition problems. However, variations of images, such as shift, rotation, and scaling, influence the matching correctness. Therefore, a feature point matching system with distinctive and invariant feature point detector as well as robust description mechanism becomes the main challenge of this issue.
    We use discrete wavelet transform (DWT) and accumulated map to detect feature points which are local maximum points on the accumulated map. DWT calculation is very efficient comparing to that of Harris corner detection or Difference of Gaussian (DoG) proposed by Lowe. Besides, feature points detected by DWT are located more evenly on texture area unlike those detected by Harris’ are clustered on corners. To be scale invariant, the dominate scale (DS) is determined for each feature point. According to the DS of a feature point, an appropriate size of region centered at this feature point is transformed to log-polar coordinate system to improve the rotation and scale invariance. A descriptor of dimension 32 is made of the contrast information to enhance the illumination robustness. Finally, in matching stage, a geometry relation is adopted to improve the matching accuracy. Comparing to existing methods, the proposed algorithm has better performance especially in scale invariance and robustness to blurring effect.
    顯示於類別:[資訊工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown319檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋