English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49378/84106 (59%)
Visitors : 7381497      Online Users : 42
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/35126


    Title: 自動化語意特徵加註設計應用於網際網路之圖像
    Other Titles: Automatic semantic feature annotation design for WWW images
    Authors: 簡靖維;Jian, Jing-wei
    Contributors: 淡江大學資訊工程學系碩士班
    郭經華;Kuo, Chin-hwa
    Keywords: 低階特徵;高階特徵;加註文字;離散小波轉換;色彩直方圖;Low-level Feature;High-level Feature;Annotation;Wavelet transform;Color Histogram
    Date: 2007
    Issue Date: 2010-01-11 06:02:52 (UTC+8)
    Abstract: 本論文中,我們設計了一個圖像自動化加註文字系統。此系統的設計目的,在於能自動的幫助使用者給予未知圖像符合語意的加註文字,藉此以提高圖像檢索及圖像分類系統的準確性。

    本系統是採用圖像低階特徵與語意特徵的結合來給予圖像適當的加註文字。一開始先將所有從網際網路取得的圖像資料,經由過濾得到關鍵字集合作為語意特徵。接下來將所有圖像切割成相同大小的子圖像集合,並利用離散小波轉換及色彩直方圖的方式分別取得材質(Texture)及顏色(Color)上的特徵然後合併成單一特徵以作為圖像的低階特徵。完成此一步驟後,我們利用低階特徵將所有子圖像及其關鍵字分群,這樣可以得到以低階特徵為中心概念的關鍵字群組,並統計群組中每一關鍵字出現的機率。完成上述訓練過程之後,將欲加註文字的圖像以相同方式取得子圖像低階特徵集合,與群組中心點作相似度計算後取得該群組的關鍵字資訊,最後藉由統計其關鍵字的機率來取得具代表性的關鍵字作為其加註文字。

    在本論文中所提出的加註文字方法,在取得語意特徵時考慮了低階特徵的特性,所以最後所得到的加註文字將會與圖像內容有一定的相關程度,意即將會更貼近使用者認知的意涵。所以利用此系統所得到的加註文字用於圖像檢索系統及分類上將會有助於準確性的提升。
    In this following proposal, we have designed an automatic image annotation system, using primarily the low level features and other semantic characteristics of the image’s color and texture to create annotations for the images. In this system, we use the Internet to obtain image information as a reference for the process.

    Throughout the process, the keywords obtained from the image’s original webpage content are collected as defining features, then all of the images are cropped into the same size and collected. Using wavelet transformation and color histogram, the texture and color features are collected and combined into one single feature, which is the image’s low level feature. Lastly, using the low level feature to allocate the images and keywords, a keyword group which has low-level features as its central concept is created and the images will have appropriate annotations. The purpose of such a design for the system is to automatically assist the user in annotating unknown images, and to increase the accuracy of image searching and image grouping systems.
    Appears in Collections:[資訊工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    0KbUnknown122View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback