English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51258/86283 (59%)
Visitors : 8021542      Online Users : 63
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/35104


    Title: Using psychometric theories and web2.0 technologies to facilitate intelligent tutoring system
    Other Titles: 智慧型學習引導系統-使用心理評量理論及Web 2.0技術
    Authors: 楊宣哲;Yang, Hsuan-che
    Contributors: 淡江大學資訊工程學系博士班
    施國琛;Shih, Timothy K.
    Keywords: 智慧型教學方針評斷;學生問題表;試題反應理論;修定版布魯姆認知分類;學習者分類;Intelligent Tutoring and Evaluation;Student-Problem Chart;Item Response Theory;Revised Bloom's Taxonomy;Learner Cluster
    Date: 2008
    Issue Date: 2010-01-11 06:01:31 (UTC+8)
    Abstract: 本研究利用ADL SCORM及IMS QTI之國際標準作為智慧型學習引導系統的整合基準,加入Bloom教育分類理論、IRT試題反映理論、SP table分析以及Kolb學習型態等多項理論之輔助,提出一個利用AJAX及Web Service技術的智慧型學習引導系統;由課程編輯者製作數位學習教材及試題開始、學習者於學習管理平台(Learning Management System)及測驗管理平台(Assessment Management System)上進行學習及測驗活動,並依據傳統測驗理論收集試題屬性,進而利用測驗之方式來分析受測者的學習能力,藉由資訊科技與多種測驗教育理論之結合,以提供教學設計者以及學習者完善且具有可重複利用之整合式學習環境。本研究針對教育與測驗理論融入資訊科技,透過傳統測驗中選擇題的試題分析與選項分析,提供基礎的試題資訊支援教師教學與測驗。另外一方面,搭配SP Chart分析試題分析與學習者分析,提供教師關於學習者類型的資訊與試題分析類型;提供學習者關於學習者的學習建議。搭配修定版Bloom認知分類,運用兩個向度,知識向度與認知向度。學習者測驗後與學習階段對於學習內容的認知向度與之事向度的瞭解百分比。可以搭配IRT估計學習者能力機制,輔助瞭解學習者學習能力。原先IRT學習者能力無法提供學習者學習到哪些內容,透過修定版Bloom認知分類,可清楚提供教師與學習者學習的狀態。除此之外,以搜尋到的學習者能力資訊與學習知識程度,利用二參數分群(Clustering)技術協助教學過程中的課輔分群、學習風格分群、學習能力分群。
    This study bases on the international standards - ADL SCORM (Sharable Content Object Reference Model 2004 4th Edition) and IMS QTI (Question and Test Interoperability v2.0) to construct an interoperability learning environment. Content designers construct learning objects and items with authoring tool, learners keep their learning activities with Learning Management System (LMS), Assessment Management System (AMS), and back end Repository mechanism. We use AJAX (Asynchronous JavaScript and XML) and other Web 2.0 concepts to facilitate our system as a RIA (Rich Internet Application).
    This study focus on intelligent tutoring and evaluating functions in e-learning platform. In order to integrate learning technology, education theories and information technology, our system supports the following education and test theorems. 1) Student-Problem Chart analysis test items for teachers and learning suggestions to learners. 2) Revised Bloom’s taxonomy has two cognition dimensions which are cognitive process dimension and knowledge dimension. The knowledge dimension is composed of four levels that are defined as factual, conceptual, procedural, and meta-cognitive. The cognitive process dimension consists of six levels that are defined as remember, understand, apply, analyze, evaluate, and create. 3) Item Response Theory applied the discrimination index, the difficulty index and guessing parameter to estimate learner ability. Revised Bloom’s cognition taxonomy combined the learner’s ability estimated by the Item Response Theory to assist learner clustering which can be used in collaborative learning, learning style grouping and remedy course.
    Appears in Collections:[資訊工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    0KbUnknown271View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback