English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51258/86283 (59%)
Visitors : 8032115      Online Users : 68
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/35093


    Title: 運用自助式建構法建立素材庫之設計
    Other Titles: The design of images database by using bootstrapping
    Authors: 陳一帆;Chen, Yi-fan
    Contributors: 淡江大學資訊工程學系碩士班
    郭經華;Kuo, Chin-hwa
    Keywords: 圖像素材庫;高階特徵;自助式建構法;特徵鑑別公制;圖像分類;關鍵字延伸;HighLevelFeature;BootstrappingConstruction;DiscriminativeFeatureMetric;KeywordExpansion
    Date: 2006
    Issue Date: 2010-01-11 06:00:37 (UTC+8)
    Abstract: 本論文中,我們設計了一個圖像素材庫。此系統的設計目的,在於能自動的幫助使用者整理圖像,對圖像資源作適當的分類,藉此省下使用者的人力以及時間。

      本系統是採用高階特徵(Text-based)對圖片加以分類。首先利用自助式建構法對使用者手工建立的類別關鍵字作關鍵字延伸,以增加每個類別關鍵字的質與量。再將圖像的關鍵字與類別延伸後的關鍵字之間做相似度計算。完成此步驟之後,會得到一個初步的圖像分類結果,最後再利用特徵鑑別公制對分類的圖像作訓練,ㄧ直到分類結果不在改變為止,即表示完成圖像自動分類的整個流程。

      在實作中,我們利用自助式建構法做關鍵字延伸達到圖片分類的目的,有別於一般的字義式關鍵字延伸,自助式建構法可以做到聯想式的關鍵字延伸,利用這樣的關鍵字延伸機制,可以做到WordNet等無法做到的圖像分類效果。圖像分類訓練方面,採用的是特徵鑑別公制的概念,即是先將特徵依照屬性作分類,再依照特徵的分類結果,將圖像作重新的分類。藉由自助式建構法與特徵鑑別公制兩者間的運用,讓系統對圖像的分類效能更逼近使用者手工分類的結果。
    In this paper, we have designed a database that can automatically classify images, for the purpose of sorting through a large number of images more conveniently and thus save manpower and resources.

    This database is characterized by high level features (text-based) to image classifying. Its features include: extending a keyword through bootstrapping construction. First of all bootstrapping construction method extended words that the user manually inputted, and then increased the value and number of classificatory keywords. The keywords and classificatory keywords after extension underwent similarity value calculations. Finishing this step results in an initial classifying for images, and the step is repeated until there are no more changes in the classifications.

    Whereas common ways of extending a keyword deal with its definition, bootstrapping construction allows expansion through associative extension. This type of keyword expansion mechanism is capable of classifying images in ways that WordNet cannot. Aside from using bootstrapping construction to expand keywords and to classify images, we have also added a discriminative feature metric to increase the precision and recall rates of image classifying to our standards.
    Appears in Collections:[資訊工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    0KbUnknown205View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback