English  |  正體中文  |  简体中文  |  Items with full text/Total items : 55184/89457 (62%)
Visitors : 10663247      Online Users : 50
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/35064


    Title: 數位相片瑕疵偵測
    Other Titles: Strategies of photo defect detection technique
    Authors: 周素美;Chou, Su-mei
    Contributors: 淡江大學資訊工程學系碩士班
    林慧珍;Lin, Hwei-jen
    Date: 2005
    Issue Date: 2010-01-11 05:58:09 (UTC+8)
    Abstract: 近年來電腦科技的進步,影像處理的技術愈來愈發達,尤其在針對舊照片或是污損的影像或影片,進行修補或是修復的研究,引起相當多學者的興趣與討論。
    目前對圖片修補的研究裡,使用電腦科技進行自動修補時,必須要先知道要修補的區域,並且由操作者進行區域的選定或標示,然後執行修補的程序。這樣的前置作業,往往在待修補區域呈現不規則狀或是污損的區域散落整張圖片時,造成使用者的困擾或有選取困難的問題。
    我們的目的是研究一個有效的方法,利用相片中瑕疵區域的特性,將輸入的破壞圖片由RGB轉換成HIS彩色空間,分析在亮度變化時,圖片像素的變化,根據變化量,得到一個最接近能呈現破壞區域的亮度值,再依不同的破壞種類的特性,得到更準確的偵測結果。協助使用者在進行影像修補程序前,可以找到正確的修補區域,以自動化或半自動化的方式,進行相片修補的程序。
    Image inpainting techniques use textural or structural information to repair or fill damaged potions of a picture. However, most techniques request a human to identify the portion to be inpainted. We developed a new mechanism which can automatically detect defect portions in a photo, including damages by color ink spray and scratch drawing. Different damage has different features. The mechanism is based on several filters and structural information of damages according to different damage. The system can make users more convenient to identify the portions before inpainting
    Appears in Collections:[Graduate Institute & Department of Computer Science and Information Engineering] Thesis

    Files in This Item:

    File SizeFormat
    0KbUnknown266View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback