English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 55542/89862 (62%)
造访人次 : 11010810      在线人数 : 38
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/35047


    题名: 以色彩分析為基礎之臉部遮蔽偵測應用於ATM監視系統
    其它题名: Facial occlusion detection based on color analysis for ATM surveillance system
    作者: 廖維中;Liao, Wei-chung
    贡献者: 淡江大學資訊工程學系碩士班
    洪文斌;Horng, Wen-bing
    关键词: 臉部遮蔽;動態偵測;橢圓偵測;樣板比對;HSV色彩模型;膚色;Face Occlusion;Motion Detection;Ellipse Detection;Template Matching;HSV Color Model;Skin Color
    日期: 2005
    上传时间: 2010-01-11 05:56:57 (UTC+8)
    摘要:   在這篇論文中,我們利用影像處理與電腦視覺技術,對自動櫃員機(ATM)的使用者做臉部遮蔽偵測,並依據不同的遮蔽狀況,提示使用者脫下安全帽或者是口罩。
      本研究以數位攝影機模擬ATM的攝錄裝置擷取使用者的影像,(1)先以橢圓偵測定位使用者的頭部,(2)再利用HSV色彩模型過濾膚色範圍,(3)最後依據膚色分布的情況判別使用者的臉部受到何種遮蔽;(4)經由連續影像對遮蔽結果做投票,以決定提示使用者的訊息。首先利用Sobel邊緣偵測與連續影像相減,再將兩者結果交集取出前景物像素;由於頭部有類似垂直軸長水平軸短之橢圓的特性,因此將垂直邊緣之垂直投影量較高的位置當作橢圓短軸的可能端點,以增進用樣板比對做橢圓偵測的效能。定位到頭部位置後以橢圓範圍做膚色判別再水平投影,先後依據額頭與嘴巴附近膚色的量判別是否受到遮蔽;為避免將頭髮與安全帽誤判,先找出影像的水平邊緣,利用一條累積直線由上往下掃瞄水平邊緣出現與否,藉由安全帽緣找出統計膚色的底限;排除安全帽後,依橢圓下半是否有連續範圍膚色量過少決定是否有口罩。最後,以連續畫格內判定的遮蔽狀況較多數者,決定提示給使用者的訊息。
      本系統在AMD 1800 XP的CPU與512 MB的RAM,輸入影像為320 x 240 RGB全彩(24 bit)Bitmap環境下,平均一秒鐘13畫格,約略在1秒鐘以內可以決定提示一位使用者的訊息;系統正確率則大概在86%以上。
    In this paper, we propose a facial occlusion detection method for Automatic Teller Machine (ATM) users by using image processing and computer vision techniques. According to different occlusion types, the system will issue an appropriate warning message to notify the user to take off his/her safety helmet or mask.
    A digital camcorder capturing user images is used to simulate an ATM surveillance system. The proposed facial occlusion detection method is composed of four steps. First, Sobel edge detection and frames difference are used to find out the pixels of foreground object. Because of human’s head likes an ellipse with longer vertical axis and shorter horizontal axis, we set the position to be a candidate of vertex of minor axis if the vertical projection of vertical edge is high enough in order to speed-up the template matching for ellipse detection. After located the head location, we slice skin color and then do horizontal projection to judge if forehead or mouth are occluded according to the capacity of skin color projection. To prevent erroneous judgment between hair and safety helmet, we find the horizontal edge, and then do top down scan to record if horizontal edge occurred by a accumulated horizontal scanline, thus we can get the lower bound of detection region by the brim of safety helmet. After eliminated helmet occlusion, we judge if mouth is occluded at bottom half of ellipse by checking if there are lower capacity of skin color continuous. Last, system notify user by the majority vote of judgments in image sequence.
    This system works under AMD 1800 XP CPU and 512 MB RAM; the format of input image is 320 x 240 true color (24 bits) Bitmap. The performance of system can reach 13 frames per second (about 0.025 ~ 0.100 seconds to process a frame according to different environment), and the average accuracy of system is higher than 86%.
    显示于类别:[資訊工程學系暨研究所] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    0KbUnknown279检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈