English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64198/96992 (66%)
Visitors : 7919517      Online Users : 6038
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/35022


    Title: 多層次排序關聯分類器
    Other Titles: Associative classifier with multi-ranking
    Authors: 楊正奇;Yang, Jeng-chi
    Contributors: 淡江大學資訊工程學系碩士班
    蔣定安;Chiang, Ding-an
    Keywords: 關聯分類器;關聯法則;執行順序;規則修剪;資料探勘;Associative Classifier;association rule;Execution Order;Rule Pruning;data mining
    Date: 2009
    Issue Date: 2010-01-11 05:55:11 (UTC+8)
    Abstract: 關聯法則是經常被使用在資料探勘的研究技術之一,進而利用關聯規則結合成關聯分類器,預測未知分類資料的類別。

    關聯規則執行分類前,會依照演算法所定義的執行順序做排序。一般而言,當規則經過排序後,規則與規則之間的執行先後順序將不再改變。實際上關聯規則執行時,當排序較高的執行後,排序較低未執行的規則在剩餘未分類資料中,可能擁有較原先更高的信賴度,或更低的信賴度,規則間的執行先後順序與重要性可能會有所不同。

    因此,本論文對此種情況,利用關聯法則提出多層次排序(Multi-Ranking)分類器,定義關聯分類器的規則執行順序及規則修剪的方法。由實驗結果顯示,多層次排序分類器在預測未知分類能有好的準確率表現與執行效率。
    Association rule is one of the .adopted techniques frequently in data mining, then integrating the association rules into a associative classifier for predicting that data are not classified.

    The association rules will be sorted by the algorithm’s definition before executing the association rules. In general, between the rule and the rule execution order no longer will change successively when the association rules are sorted. Actually, after executing higher rank , the lower ranking and unexecuted rules will have different confidence from initial confidence in the remaining data. And the rules’ execution order and importance will be difference.

    Therefore, we propose a new classifier named Multi-Ranking classifier in view of the situation, defining the rules of the associative classifier execution orders. Moreover, Multi-Ranking classifier have good accuracy and execution performance in the experiment.
    Appears in Collections:[資訊工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    0KbUnknown305View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback