English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9384797      線上人數 : 11838
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/35002


    題名: 設計網路文章推薦系統於電腦輔助英語教學
    其他題名: The designing of a document recommendation system for computer assisted english learning on the web
    作者: 鄧力維;Teng, Li-wei
    貢獻者: 淡江大學資訊工程學系碩士班
    郭經華;Kuo, Chin-hwa
    日期: 2005
    上傳時間: 2010-01-11 05:53:03 (UTC+8)
    摘要: 在本論文中,我們提供了一個網路上的文章推薦系統給第二語言學習者當作學習工具。事實上我們可以說這一個系統是一個具有適性化的網路文章推薦系統,應用在給予以英文為第二外語的學習者。

    首先我們會提供相似網頁給予使用者,以提高字彙曝光率,以增竟學習效能,我們亦會記錄使用者資訊,以當作使用者等級讓接著的文章評分過濾器,能夠照著使用者的等級加以分析推薦適合使用者的文章,而過濾掉與使用者程度不符的文章,本論文最主要的貢獻便在於利用全球資訊網之便利性,將學習置於網路上增加學習之便利、提供使用者搜尋相似網頁,提高字彙之曝光率提升學習效率、透過調整適當之門檻值讓文章評分過濾器更具適性化,推薦之文章更能貼近使用者程度。

    在實作本系統時,我們將調整文章評分過濾器中所用到的門檻值,來達到適性化。我們也利用實驗數據來證明我們所訂定的門檻值是否能符合我們的系統,我們將六等級及資料庫中的資料,調整不同的門檻值來檢視六等級之分佈是否在資料庫中,在將之轉換成高斯分佈,看看兩者高斯分佈是否貼近,並以數據量化高斯分佈圖形,以數據檢視兩分佈是否接近,月接近表示兩者難易分佈是一樣的,而2000這個門檻值也的確是可以符合我們的系統的,這也是本論文之貢獻之一。
    In this paper, we propose a Document Recommendation System on WWW for English as Second Language(ESL) learners. Actually we can say the system is a personal recommendation system for ESL learners.

    First, we provide the similar pages for those learners, and the similar pages that we provide can be regarded as the same theme which the pages discussed. We also record the degree of learners and use a Language Difficulty Filter(LDF) to filter out the pages which is not accord with the learner’s degree as our main component in the system. The main idea of our system is to raise the rate of repeated exposure of the word which user wants to know. So we provide this system, in addition to raise the rate of repeated exposure of words, we also choose the pages which accord with the learner’s degree.

    To test the actually system, we adjust the threshold for our system. With this system, we will build the Gaussian Distribution for both scores of six degree and data in our data base and then we will examine the Chi-Square test statistics from the distribution of them for the different threshold of LDF subsystem. After examining and analyzing the results, we concluded through expand by sense , the threshold (2000) of the LDF subsystem as a whole has a dramatic improvement of personally recommend. Beside the data in our data base, we can also use the keywords with a closer definition with the image we desire.
    顯示於類別:[資訊工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown337檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋