English  |  正體中文  |  简体中文  |  Items with full text/Total items : 57332/90921 (63%)
Visitors : 13039986      Online Users : 414
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/34997


    Title: Using petri nets to enhance web usage mining
    Other Titles: 利用派翠網路來協助網站使用者習性探勘
    Authors: 楊士央;Yang, Shih-yang
    Contributors: 淡江大學資訊工程學系博士班
    陳伯榮;Chen, Po-zung
    Keywords: 網站使用者習性探勘;派翠網路;資料前置處理;Web Usage Mining;Petri Nets;Data Preprocessing
    Date: 2008
    Issue Date: 2010-01-11 05:52:47 (UTC+8)
    Abstract: 在網站使用者習性探勘的過程中,正確的網站架構分析不僅可以協助資料前置處理,也可以提高探勘結果的正確性。
    派翠網路是ㄧ個被廣泛應用的高階圖形化模型,派翠網路可以將模型分析的結果及特性儲存於關聯矩陣中以做為進一步分析之用。另外,它的ㄧ些經過完整驗證且廣為熟知的特性也可以用來協助解決研究人員面臨的問題。
    在本論文中,我們提出利用派翠網路來來作為分析網站網頁架構的模型,我們利用派翠網路模型中的位置來代表網站中的網頁並利用轉移來代表網站中的超連結,並討論如何利用分析網站架構後所得到(或產生)的關聯矩陣來協助進行資料前置處理中的網頁內容範圍辨識,並利用派翠網路模型的可到達行為特性來協助進行資料前置處理中的路徑填補。此外,我們也應用派翠網路模型的馬可夫特性,利用網站架構分析過程所產生的網頁內容範圍關聯矩陣來進行使用者瀏覽習性的分析。
    Precise analysis of the web structure can facilitate data pre-processing and enhance the accuracy of the mining results in the procedure of web usage mining.
    PN(Petri Nets) is a high-level graphical model widely used in modeling system activities with concurrency. PN can save the analyzed results in an incidence matrix for future follow-up analyses, and some already-verified properties held by PN, such as reachability, can also be used to solve some unsettled problems in the model.
    In the present study, we put forth the use of PN as the Web structure model. We adopt Place in the PN model to represent webpage on the websites and use Transition to represent hyperlink. Through the model, we can conduct Web structure analysis. We simultaneously employ the Web structure analysis information in the incidence matrix and the reachability properties, obtained from the PN model, to help proceed with pageview identification and path completion at the data preprocessing phase. In addition, we conduct Web structure analysis to generate pageview state matrix, and we further undergo the analysis of user browsing behaviors through Markov analysis at the phase of pattern discovery.
    Appears in Collections:[Graduate Institute & Department of Computer Science and Information Engineering] Thesis

    Files in This Item:

    File SizeFormat
    0KbUnknown259View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback