淡江大學機構典藏:Item 987654321/34994
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 10045450      Online Users : 21402
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/34994


    Title: 交通標誌偵測與辨識
    Other Titles: Traffic sign detection and recognition
    Authors: 王宗任;Wang, Tsung-jen
    Contributors: 淡江大學資訊工程學系碩士班
    洪文斌;Horng, Wen-bing
    Keywords: 交通標誌偵測;「色相-飽和度-亮度」色彩模型;樣板比對;traffic sign detection;HSV color model;template match
    Date: 2009
    Issue Date: 2010-01-11 05:52:38 (UTC+8)
    Abstract: 本篇論文中,我們利用影像上連通區域的顏色與形狀,判斷交通標誌的位置與類型,並以樣板比對來辨識交通標誌內部的訊息,提供駕駛人關於交通標誌的資訊。
    本系統主要分為兩階段:交通標誌偵測與辨識。偵測部份首先利用交通標誌在HSV色彩模型(HSV color model)中的顏色範圍,篩選出交通標誌的候選區域,再利用連通區域標示(connected component labeling),與邊緣偵測(edge detection)確認交通標誌的位置,辨識部分則將偵測到的交通標誌作正規化的處理,接著依據形狀分辨交通標誌類型,最後輸入至樣板比對(template match)系統,即可確認交通標誌上的訊息。
    本系統著重於利用簡單運算來達到良好的偵測率,輸入圖片格式為640x480 RGB圖片,執行圖片平均時間為671.9 ms,實驗樣本的平均偵測率結果為95%,平均辨識率為81%。
    In this paper, we use color and shape to detect and classify traffic signs. Then, the message on the traffic sign is recognized for driver.
    The method consists of two phases: traffic sign detection and recognition. In the detection stage, we use the distribution of traffic sign on HSV color model to segment the regions of traffic sign, and then use connected component labeling and edge detection to find positions of traffic signs. In the recognition stage, the detected traffic signs are normalized and classified by shape detection. Finally, we input the result to template match system, so information on traffic signs is identified.
    Our system uses simple algorithm to achieve high detection rate. The format of input image is 640×480 true color bitmap. The average execution time for each image is 671.9ms, the detection rate is 95% and the recognition rate is 81%.
    Appears in Collections:[Graduate Institute & Department of Computer Science and Information Engineering] Thesis

    Files in This Item:

    File SizeFormat
    0KbUnknown459View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback