English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51254/86278 (59%)
Visitors : 8001559      Online Users : 87
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/34938


    Title: 老舊電影的雜訊毀損偵測
    Other Titles: Defect detection on aged films
    Authors: 鍾興穎;Chung, Hsing-ying
    Contributors: 淡江大學資訊工程學系碩士班
    施國琛;Shih, Timothy K.
    Keywords: 動量估測;形態影像學;雜訊偵測;Motion estimation;Morphology;Spike defect detection;Scratch line detection
    Date: 2008
    Issue Date: 2010-01-11 05:48:08 (UTC+8)
    Abstract: 在老舊影片之中,存在著不同類型的雜訊,例如汙點雜訊、直線雜訊等,而且在不同的雜訊上會擁有各別的特徵,因此針對各種存在於老舊影片中之雜訊,要以單一種方法達來到精確的雜訊偵測是很困難的。
    在本論文將對於在老舊影片上最常見到的雜訊類型,汙點雜訊以及直線雜訊提出個別的偵測方法。在汙點雜訊偵測上利用到動量偵測以及形態影像學的方法來把汙點雜訊標示出來。在直線雜訊偵測上利用在每一條直線之間的亮度的差異,配合標凖差以及權重方式從亮度差異中挑選出有最有可能為雜訊之線段。
    Aged motion pictures may contain different types of defects, such as spikes and scratch lines. Each type of defect has its different properties. It is relatively hard to precisely detect these defects on aged films by using only a single solution. This paper proposes two techniques to detect spikes and scratch lines on aged films. In detecting spikes, we use the motion estimation and morphological image processing. In detecting scratch lines, we propose to compute the mean of intensity on each column, and then use the standard deviation and compute the number of the weight to obtain the result of detecting.
    Appears in Collections:[資訊工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    0KbUnknown165View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback