English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52048/87179 (60%)
Visitors : 8880116      Online Users : 416
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/34918

    Title: 迴流效應於非對稱質量通量之二行程平板式層狀逆流型質量交換器效率改善之研究
    Other Titles: Performance improvement on double-pass parallel-plate laminar counterflow mass exchangers with external recycle and asymmetric wall fluxes
    Authors: 李博鈞;Lee, Po-chun
    Contributors: 淡江大學化學工程與材料工程學系碩士班
    何啟東;Ho, Chii-dong
    Keywords: 共軛格拉茲問題;迴流;平板型質量交換器;質傳改善率;非對稱壁通量;Conjugated Graetz problem;External Recycle;parallel-plate mass exchanger;performance improvement;Asymmetric wall fluxes
    Date: 2008
    Issue Date: 2010-01-11 05:46:13 (UTC+8)
    Abstract: 為了求解非固定質量通量下伴隨迴流裝置之平板型質量交換器的共軛格拉茲問題,本研究使用分離變數法(separation of variables)及重疊理論(superposition method),並在求解過程中利用正交展開法(orthogonal expansion technique),得其壁上濃度、平均濃度分佈及平均謝塢數(Sherwood number)。此外於不同迴流裝置下,亦探討改變操作參數時對質傳效率的影響,並與單行程系統及中間加裝不可滲透薄膜之系統作比較。
    A new device of double-pass mass exchanger under asymmetric wall fluxes is to divide a parallel-plate channel by inserting a permeable barrier into two subchannels. The recycle effect was introduced to the double-pass mass exchangers under asymmetric wall fluxes to improve the mass transfer efficiency. The theoretical formulation of such conjugated Graetz problems were developed by making mass balance and the analytical solutions were obtained by using the superposition method of an asymptotic solution and a homogeneous solution. The theoretical predictions of the double pass mass exchanger with external recycle were compared with those in single-pass devices and double-pass devices with an impermeable sheet inserted under the same working dimensions. The considerable mass-transfer efficiency improvement is obtainable for large mass-transfer Graetz number. The influences of the permeable-barrier location and recycle ratio on the mass transfer efficiency enhancement and the power consumption increment are also discussed in this study.
    Appears in Collections:[化學工程與材料工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback