English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52052/87180 (60%)
Visitors : 8895565      Online Users : 147
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/34860

    Title: 薄膜蒸餾脫鹽模組之模擬與最佳化研究
    Other Titles: Modeling and optimization of membrane distillation modules for desalination
    Authors: 廖俊興;Liau, Jung-shing
    Contributors: 淡江大學化學工程與材料工程學系碩士班
    張煖;Chang, Hsuan
    Keywords: 薄膜蒸餾;脫鹽;反應表面法;模擬;最適化;Membrane distillation;Desalination;Response surface method;simulation;Optimization
    Date: 2008
    Issue Date: 2010-01-11 05:41:53 (UTC+8)
    Abstract: 薄膜蒸餾(Membrane Distillation, MD)是利用一多孔性疏水薄膜,在薄膜兩側提供溫度之差異,藉以因水之蒸汽壓差產生水之傳輸,達到將水純化之目的。本論文針對兩種適合應用於海水淡化之薄膜蒸餾單元進行模擬分析研究,包括直接接觸式(Direct Contact Membrane Distillation, DCMD)與氣隔式(Air Gap Membrane Distillation, AGMD)。本研究使用之模式建立於Aspen Plus®並
    Membrane distillation is a separation operation employing porous hydrophobic membrane and utilizing the vapor pressure difference across the membrane due to temperature difference. This thesis investigates the application for desalination via simulation. Direct contact membrane distillation (DCMD) and air gap membrane distillation (AGMD) are studied. Simulation model is built on Aspen Plus® with a user defined unit operation written for the two types of membrane distillation, respectively. The model is different from reported in that the bulk phase mass resistances are included. Large scale modules for practical industrial applications are simulated and studied for the effects of design and operation variables, as well as the importance of heat and mass transfers of each phase. Response surface method is adopted to establish the performance-variable quadratic model and optimization is further accomplished.
    Analysis results indicate that the most significant variables are hot liquid inlet temperature, hot liquid inlet flow rate, cold liquid inlet flow rate and the membrane thickness or pressure of the air gap. The optimal operation should use minimum hot liquid flow rate, maximum hot liquid temperature, maximum cold liquid flow rate and minimum membrane thickness for DCMD with efficiency of 8.2% can be obtained and use minimum hot liquid flow rate and maximum hot liquid temperature for AGMD with efficiency of 5.8% can be obtained.
    Appears in Collections:[化學工程與材料工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback