English  |  正體中文  |  简体中文  |  Items with full text/Total items : 58323/91877 (63%)
Visitors : 14332873      Online Users : 99
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/34844

    Title: 沉浸式薄膜過濾中粒子附著機構之研究
    Other Titles: A study on the mechanism of particle deposition in submerged membrane filtration
    Authors: 陳祥嘉;Chen, Hsiang-chia
    Contributors: 淡江大學化學工程與材料工程學系碩士班
    黃國楨;Hwang, Kuo-jen
    Keywords: 沉浸式薄膜過濾;微過濾;附著機率;粒徑分佈;submerged membrane filtration;microfiltration;Particle deposition;Particle size distribution
    Date: 2008
    Issue Date: 2010-01-11 05:40:51 (UTC+8)
    Abstract: 本研究在討論操作條件對沉浸式薄膜過濾之粒子附著機構的影響。以孔洞大小為0.1μm之薄膜,過濾平均粒徑為7μm之聚甲基丙烯酸甲酯(PMMA)粒子,探討不同的過濾通量、過濾時間、通入空氣之曝氣量與氣泡大小等操作條件對粒子的附著機構與過濾效能之影響。
    The effects of operated conditions, such as filtration flux, filtration time, particle size, aeration intensity, air bubble size on the deposition properties, cake properties, and the performance in submerged membrane filtration are studied. A particulate sample with a wide size distribution range from submicron to micron is used in experiments. The properties of particle deposition are analyzed based on a force analysis. The results show that: For submicron particle, the interparticle force plays a major role in particle deposition, however, the drag force, gravitational force and bubble shear force increase their importance as particle increase. When particle size is larger than 1μm, the interparticle force drops rapidly, i.e. the van der Waals force is greater than electrostatic force under these conditions. Therefore, the importance forces that effect particle deposition include drag force, gravitational force and bubble shear force as particle size larger than 10μm. Increasing filtration flux lead to enlarge normal drag force and increase deposition properties. An increase in aeration intensity and reduction of bubble size can also decrease particle deposition properties. Furthermore, the cake properties, such as mass, porosity and average specific filtration resistance of cake would be affected by deposition properties. Although some theoretical cake properties are closed to experimental data, but the probability of particle deposition functions still need to modify.
    Appears in Collections:[Graduate Institute & Department of Chemical and Materials Engineering] Thesis

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback