淡江大學機構典藏:Item 987654321/34830
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 10423133      在线人数 : 16950
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/34830


    题名: 薄膜氣體分離系統之最適化 : 應用基因演算法
    其它题名: Optimization for membrane gas separation system using evolutionary algorithm
    作者: 胡文智;Hou, Wen-chih
    贡献者: 淡江大學化學工程與材料工程學系碩士班
    張煖;Chang, Hsuan
    关键词: 基因演算法;最適化;氣提滲透器;連續薄膜塔;妥協;evolutionary algorithm;optimization;stripper permeator;continuous membrane column;trade-off
    日期: 2005
    上传时间: 2010-01-11 05:39:55 (UTC+8)
    摘要: 本論文應用基因演算法在薄膜氣體分離之單目標、雙目標與三目標函數最適化,並建立了三種系統配置,包括單一氣提滲透器、串聯雙氣提滲透器及連續薄膜塔之數學模式,以及基因演算法之程式。本論文並針對自空氣分離出增濃氧氣產物之問題完成個案研究,進行以Rony值、Poxy值與薄膜面積為目標函數,且在不同氧氣產物純度要求與進料流量下之最適化,並包括高壓與低壓(真空)兩種操作模式。與文獻結果比較,對單目標函數最適化而言,基因演算法獲得同等於或優於傳統最適化法之結果。對多目標函數最適化,結果均以Pareto圖表達,最終族群解呈現了相互妥協之特質。
    整體而言,較之高壓操作,低壓操作可獲回收率較低。對不同氧氣產物純度與進料流量而言,連續薄膜塔均在最佳族群解中,為最具彈性之系統配置。
    Genetic Algorithm or Evolutionary Algorithm is applied for the optimization of membrane gas separation systems. Optimizations for single, binary as well as triple objective functions are studied. The optimization problem involves the selection of the optimal system schemes from three alternatives, which are Continuous Membrane Column (CMC), Single Stripper Permeator (SSP), and Two Stripper in Series Permeator (TSSP). The mathematic models for these three configurations and the program of Genetic Algorithm are developed. The air separation for enriched oxygen production is the selected system for investigation. The three objective functions include the Rony index, power consumption per unit equivalent pure oxygen, and the membrane area. Both high pressure and low pressure (vacuum) operation modes are optimized and the effects of different oxygen product purity and feed rate are analyzed. For single objective function optimization, the solutions obtained using Genetic Algorithm are equivalent or superior than those by traditional optimization methods. For binary and triple objective functions optimization, the Pareto plots presenting multiple trade-off solutions are generated. In general, compared to high pressure operation mode, the product recovery for low pressure operation mode is lower. For different product purities and feed rates, CMC scheme is always in the optimal solutions.
    显示于类别:[化學工程與材料工程學系暨研究所] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    0KbUnknown291检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈