English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62805/95882 (66%)
Visitors : 3932719      Online Users : 473
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/34819


    Title: 應用計算流體力學模擬之多目標最佳化觸媒設計
    Other Titles: Computational fluid dynamics-based multiobjective optimal catalyst design simulation
    Authors: 趙永康;Chao, Yung-kang
    Contributors: 淡江大學化學工程與材料工程學系碩士班
    張煖;Chang, Hsuan
    Keywords: 計算流體力學;填充床反應器;整合式多目標最佳化;二次重組反應器;基因演算法;多目標最佳化;蒸氣重組;computational fluid dynamics;Packed Bed Reactor;Integrated optimization system;Secondary reformer;Genetic Algorithm;Multiobjective optimization;Steam reforming
    Date: 2009
    Issue Date: 2010-01-11 05:39:08 (UTC+8)
    Abstract: 本論文使用計算流體力學(Computational Fluid Dynamics, CFD)軟體FLUENT,完成甲烷蒸氣重組製氫程序中二次重組反應器,管球直徑比(N)為4之模擬,包括球形與圓柱形觸媒。本論文並應用整合式多目標最佳化(Integrated Optimization System),包括實驗設計法(Design Of Experiment, DOE)、CFD模擬、反應表面法(Response Surface Method)以及基因演算法(Genetic Algorithm, GA),考慮單位長度觸媒床之壓損最小化與氫氣生成速率最大化之雙目標函數,完成二次重組反應器之觸媒設計最佳化設計。
    球形與圓柱形觸媒最佳化設計結果均顯示,觸媒孔隙直徑對各目標函數之影響均很小,觸媒直徑之改變會產生兩個目標函數間之相互妥協現象。圓柱形觸媒最佳化設計結果顯示,最佳解使用大單孔觸媒或四孔觸媒之設計。使用大單孔觸媒之設計時,觸媒孔隙直徑應使用較大值,約1 μm,觸媒直徑則應介於0.01~0.013 m;使用四孔觸媒之設計時,觸媒孔隙直徑無特別重要性,觸媒直徑則應介於0.006~0.008 m。
    In this thesis, the packed bed secondary reformer in the industrial hydrogen generation process is simulated using Computational Fluid Dynamics (CFD) for the reactor with tube-to-particle diameter ratio of 4 and both spherical and cylindrical shape of catalysts. An integrated optimization scheme, involving design of experiment, computational fluid dynamics simulation, response surface model, and genetic algorithm, is further appled for the mutiobjective optimization of catalyst design. The objective functions are pressure drop and hydrogen generation rate.
    For both spherical and cylindrical catalysts, the objective functions are not sensitive to the catalyst pore diameter; however, the catalyst particle diameter shows trade-off relation on the two objective functions.
    The optimization results reveal that the one-big-hole or the four-hole designs should be used for the cylindrical catalysts. For the one-big hole cylindrical catalyst, larger catalyst pore diameter, around 1 μm, and the catalyst particle diameter between 0.01 m and 0.013 m should be used. For the four hole cylindrical catalyst, the catalyst pore diameter is of no significance, but the catalyst particle diameter should be in the range of 0.006~0.008 m.
    Appears in Collections:[化學工程與材料工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    0KbUnknown311View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback