English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9562309      線上人數 : 17780
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/34621


    題名: 利用類神經網路預測建築物在干擾效應下之設計風載重. Applications of neural networks on the predictions of interference effects on buildings design wind load. 2
    其他題名: Applications of neural networks on the predictions of interference effects on buildings design wind load.
    作者: 陳正瑋;Chen, Cheng-wei
    貢獻者: 淡江大學土木工程學系碩士班
    鄭啟明;Cheng, Chii-ming
    關鍵詞: 高層建築;干擾效應;設計風載重;類神經網路;high-rise building;interference effect;design wind load;Neural Network
    日期: 2008
    上傳時間: 2010-01-11 05:26:28 (UTC+8)
    摘要: 過去房屋的設計皆是以地震力為主,但隨著現代都市的高樓林立,高層建築已經漸漸取代了低矮建築,然而在亞熱帶島嶼的台灣,冬天有東北季風,夏天又常有颱風侵襲,由於高層建築相對於低矮建築來說勁度較低,且當建築物愈接近地面因地表粗糙度的關係風力較小,因此愈高的建築物所受到的風力會愈大,所以在設計時就必須考慮到風力對高層建築物的影響。而在風力對高層建築的影響中,建築物相互間的交互作用是一個重要的問題,影響高層建築物間干擾效應的參數很多,如上游流場、建築物間的距離及主建物及干擾建物的尺寸等。
    本文主要是利用類神經網路對目前已有的干擾效應資料庫來進行干擾係數的預測,最後再利用所預測的干擾係數來計算出設計風載重。研究使用的類神經網路為輻狀基底函數類神經網路,其主要架構分為輸入層、一層隱藏層及輸出層,在使用遞增式的方法選取出中心點後透過隱藏層中的輻狀基底函數來尋求出網路模式。
    由本文的結果得知,在訓練資料的預測方面絕大多數的誤差都低於3%,僅有少數幾點偏高一些,但仍然都在5%以下,在預測資料上,A(α=0.32)、B(α=0.25)、C(α=0.15)三個地況中,除了C 地況在橫風向動態背景方面平均誤差較高外,其餘在靜態及動態背景部份平均誤差皆低於10%,動態共振部份A、B 地況介於10~20%之間,但在最複雜的C 地況則大多介於20~35%之間,因此在共振部份的預測仍需加強。
    In large city, tall buildings are usually built in a cluster within the crowded commercial
    zone, and the interference effects from the adjacent buildings cannot be ignored. Due to the
    complexity of the interference phenomenon, the building interference phenomenon is too
    complicated a problem for traditional engineering approaches. A more sensible way to deal with
    this problem would be using good quality aerodynamic database with IT techniques such as
    neural network. The aim of this thesis is to construct an aerodynamic database on building
    interference that can be used together with the wind code or/and single building’s aerodynamic
    database for wind resistant design of tall buildings.
    In this study the Artificial Neural Network technique was applied on an existing limited
    aerodynamic database to predict tall buildings’ interference factor (IF), and use the result to
    calculate design wind load. The ANN model is radial basis function (RBF) neural network, and
    the framework includes input layer, a single hidden layer and output layer. By centers and radial
    basis function in the hidden layer to create a neural network.
    The results indicate that, in the training phase, the error almost can smaller than 3%, in
    the predicting phase, except acrosswind background part in terrain C ,the static part and
    background part in all terrain are less than 10%. The resonant part in terrain A&B are within
    10% to 20%. However, in terrain C the error of resonant part can be as large as 20% to 35%. In
    other words the resonant part need to be further improved.
    顯示於類別:[土木工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown242檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋