English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52048/87179 (60%)
Visitors : 8876942      Online Users : 264
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/34578

    Title: 不同系列橋樑斷面之氣動力參數研究
    Other Titles: Study of aerodynamic coefficients for different types of bridge deck sections
    Authors: 趙偉棠;Chao, Wei-tang
    Contributors: 淡江大學土木工程學系碩士班
    Keywords: 長跨徑斜張橋;寬深比;斷面模型;相似性轉換;抖振反應;渦流振動;顫振臨界風速;long-span bridge;width-to-depth ratio (B/D);deck section model;buffeting;better-streamlined;flutter wind speed;vortex shedding
    Date: 2007
    Issue Date: 2010-01-11 05:23:57 (UTC+8)
    Abstract: 本論文的研究內容為不同系列斷面對長跨徑橋梁顫振與抖振行為之
    This main objective of this thesis is to investigate and compare flutter
    wind speeds and buffeting responses of the prototype bridge with different
    types of deck sections. There are four series of bridge decks including
    rectangular sections, rectangular sections with triangular edge-fairings, box
    sections and plate girder sections. In each series several section models with
    different width-depth ratios are studied. Only the tests of the series of
    rectangular sections are conducted in this thesis. The other three types are
    adopted from other researchers’ work. The static wind force coefficients and
    the flutter derivatives are measured in the tests and then substituted into the
    numerical model to evaluate the flutter wind speed and buffeting response of
    the prototype bridge.
    The comparison of the flutter wind speeds obtained from the tests
    indicates that for a given width-depth ratio, the rectangular section with
    triangular edge-fairings is the best, rectangular section the second, box section
    the third, and plate girder section the worst. The flutter wind speed obtained
    from a numerical analysis based on flutter derivatives agrees well with that
    measured from the test. The results from the tests in turbulent flows indicate
    that the flutter wind speed increases with turbulence intensity. The results
    reveals that the modification of the bridge deck section significantly affect the
    aerodynamic stability of bridges.
    Appears in Collections:[土木工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback