English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49590/84835 (58%)
Visitors : 7685557      Online Users : 103
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/34545


    Title: 質群演算法應用於鋼筋裁切最佳化問題之研究
    Other Titles: Using particle swarm optimization to plan of cutting steel bars
    Authors: 李冠廷;Li, Kung-ting
    Contributors: 淡江大學土木工程學系碩士班
    楊亦東;Yang, I-tung
    Keywords: 質群演算法;鋼筋裁切;施工管理;成本;最佳化;Particle Swarm Optimization (PSO);steel bar cutting;construction management;cost;Optimization
    Date: 2007
    Issue Date: 2010-01-11 05:22:11 (UTC+8)
    Abstract: 近年來整體的營建市場較為不景氣,因此目前營建公司將成本的控制視為重要的一環,期望藉由工程技術的提昇,以降低工程費用的支出。
    鋼筋裁切係由已知尺寸的原料鋼筋中,以最佳方式裁出符合需求尺寸的鋼筋。主要為明確地規劃每一段需求鋼筋應由哪一根原料鋼筋裁切而得的方式,即建立需求和原料鋼筋之間關係的裁切計畫。本研究規劃的目標為鋼筋總成本最小化,包含裁切後未使用的原料鋼筋退回價值、已使用原料鋼筋剩料轉賣價值及減少裁切次數所花費的成本。鋼筋總成本最小化將有助於減少鋼筋工程成本費用。以長期來看,透過良好的鋼筋裁切計畫將可以節省可觀的不必要成本支出。
    本研究提出鋼筋裁切問題的裁切模式,並發展新式質群演算方法。質群演算法是利用群體智慧的概念,在可行解範圍的空間內有效率地搜尋良好解。進一步分析此模式,決定最適合之質群演算法。針對實際案例進行演算測試,以驗證本模式確實能夠正確且有效率地求解出品質良好的裁切計畫。模式並以電腦化作業的方式,來節省規劃人力,提升工程品質,滿足建築工地的施工需求。
    Since construction industry has been under recession in recent years, construction companies treat cost control as an important issue. It is expected that enhancing construction technique can reduce the cost.
    The steel bar to be cut is selected from steel bar raw material of fixed sizes by optimization. To precisely plan which steel bar raw material should be cut to produce specific steel bars, the cutting plan of raw material was developed. The objective of this research is to minimize total cost of steel bar, including return value of cut but not used steel bar, resell value of surplus steel bar and reduced cost by cut frequency reduction. Total steel bar cost minimization will contribute to steel bar construction cost. In the long-term, a sound steel bar cut plan can avoid tremendous dispensable cost.
    This research proposed a steel bar cutting model, which includes a new Particle Swarm Optimization (PSO). The PSO utilizes the concept of swarm intelligence to obtain the optimal solution efficiently. The model was applied to real cases. The results verified that the proposed model can produce a solution of a high quality cut plan correctly and efficiently. The model is computerized to save planning manpower, enhance construction quality and satisfy job site construction requirements.
    Appears in Collections:[土木工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    0KbUnknown142View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback