English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58808/92514 (64%)
造访人次 : 650963      在线人数 : 50
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/34532


    题名: 混合式基因演算法於鋪面落重撓度試驗動力回算分析之研究
    其它题名: Dynamic backcalculation for FWD deflections of pavements using hybrid genetic algorithm
    作者: 胡光復;Hu, Kuang-fu
    贡献者: 淡江大學土木工程學系博士班
    張德文;Chang, Der-wen
    关键词: 混合式基因演算法;鋪面;落重撓度試驗;動力回算;dynamic;backcalculation;hybrid-genetic-algorithm;FWD
    日期: 2007
    上传时间: 2010-01-11 05:21:20 (UTC+8)
    摘要: 鋪面落重撓度儀(FWD)為國內外鋪面撓度檢測之主要設備,其能有效地掌握現地鋪面之力學現象,提供鋪面管理與維護策略資訊;試驗量測數據解析以回算分析方法為主,隨著鋪面設計方法由傳統的經驗設計法演進至力學-經驗設計法,亦使該項試驗之回算分析更顯重要。
    於前人研究可得知,相同正算理論程式若採用不同回算演繹技巧將會影響回算最終結果之呈現,且傳統數值分析方法(如:迭代法)常會遭遇到回算起始模數值選用與陷入局部極小值問題造成回算誤差;而新型啟發式演算法(如:基因演算法) 雖然全域搜尋能力佳,但在精度要求下常造成回算時間過長等缺點。因此,本研究除探討回顧國內外鋪面撓度回算程式所採用的回算方法及數值分析技巧外,擬針對落重撓度試驗動力特性,使用全域搜尋之基因演算法與局部搜尋之二分法並稱為混合式基因演算法(Hybrid Genetic Algorithm, 簡稱HGA),且以此方法為回算工具進而發展成動力回算程式DBFWD-HGA。
    為探究相同正算核心程式不同演算技巧之比較,研究分別使用迭代法DBFWD、基因演算法DBFWD-GA與DBFWD-HGA等回算程式進行剖析,以求得國內外柔性與剛性模擬鋪面結構及實際案例鋪面結構之回算結果。研究結果顯示:在理論分析回算結果中,使用局部搜尋的策略不僅可以增加基因演算法的局部搜尋能力,提高收斂率,亦可有效解決基因演算法於微調上不足的問題,減少運算時間,故在搜尋最佳解的方法上,能有效改善基因演算法運算效率;但在案例分析上則差強人意,未若傳統迭代法DBFWD或資料庫程式MODULUS為佳,其可能為所探討之回算參數影響因子有限而致。另外,基因演算法計算時間遠高於迭代法;而混合式基因演算法DBFWD-HGA,則能有效地降低基因演算法運算時間至0.27~0.75倍,但仍為迭代法5倍以上的時間,實務應用上未達經濟效益。
    The pavement FWD device, which can effectively know mechanics of the pavement well and provide valuable information of pavement management and maintenance, is a major equipment used to evaluate the deflections of pavements around the world. Moreover, the test measurement data is comprehensively analyzed by using the backcalculation. As the design method of pavement evolves from traditional method into mechanics-empirical design method, the backcalculation analysis turns out to become very crucial.
    According to former research, same forward calculation program with different methods of backcalculation will lead to different results. Furthermore, traditional numerical methods such as iterative method often encounter backcalculation errors due to the initial value and local minimum value. Additionally, although the new-type heuristic algorithm such as genetic algorithm is good at global search, it still has the flaw of long backcalculation time with the requirement of resolution. Hence, this research not only explores the backcalculation and numerical methods introduced by backcalculation program around the world but also capitalizes on global search of genetic algorithm associated with local search of bisection method to form a Hybrid Genetic Algorithm(HGA). Accordingly, dynamic backcalculation program DBFWD-HGA can be formed based on HGA.
    In order to explore and compare same forward calculation program with respect to different algorithms, this research simulates the results of flexible and rigid pavement and field case study by using DBFWD, DBFWD-GA, and DBFWD-HGA. In the theoretical backcalculations, the results show that using the local search method can not only increase the search capability and convergence rate of genetic algorithm but also effectively solve the fine-tuning deficiency of the algorithm and save operation time. Therefore, in the means of searching the optimum solution, this method can effectively improve the operation efficiency of genetic algorithm. However, regarding the case analysis, the results show that the method is not superior to traditional DBFWD and MODULUS due to limited variable study on factors affecting the backcalculations. Besides, calculation time consumed by genetic algorithm is much longer than iterative method. Though the calculation time of DBFWD-HGA can be lowered by 0.27~0.75 times (27%~75%), it is still more than 5 times that of iterative method. In this case, this method is not yet efficient at the being.
    显示于类别:[土木工程學系暨研究所] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    0KbUnknown196检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈