English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7380467      線上人數 : 73
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/34285


    題名: 「知識管理」之共詞分析研究
    其他題名: A co-word analysis for knowledge management
    作者: 周淑珍;Chou, Shu-chen
    貢獻者: 淡江大學資訊與圖書館學系碩士班
    蔡明月;Tsay, Ming-yueh
    關鍵詞: 知識管理;共詞分析;階層集群分析;多元尺度法;領域分析;Knowledge Management;co-word analysis;domain analysis;hierarchical cluster analysis;multi-dimensional scaling;thematic map
    日期: 2007
    上傳時間: 2010-01-11 05:07:10 (UTC+8)
    摘要: 本研究旨在應用資訊計量學之共詞分析方法,針對「知識管理」相關文獻進行深化主題分析。以Web of Science資料庫1974年至2005年「知識管理」相關文獻共計2097篇為研究對象,針對題名與摘要欄位探討主題語詞出現的頻率及其分佈,並以高頻次主題語詞作為共詞分析的基礎,再利用階層集群分析與多元尺度法等統計方法呈現知識管理主題地圖,檢視1997年以前、1998年至2001年、2002年至2005年三個時期知識管理主題的分佈與歷史演變,藉以瞭解專家學者在學術活動中的主題研究趨向與新興主題,以及知識管理的知識結構與各領域之間的關聯,期能有助益於「知識管理」領域的發現。
    研究結果歸納如下:
    一、 知識管理主題經由共詞分析研究結果,顯示三個時期的知識管理主題皆呈現分散的情況,並且具高度複雜性。
    二、 知識管理歷年來的主題發展演變不大,三個時期的核心主題語詞為知識、管理、資訊、系統、流程、組織、發展、利用、技術、問題、學習、角色、脈絡、工作、方法、工具、實施、架構等,彼此的關聯度逐年昇高,而在各時期強調的研究焦點在第一時期偏向「資訊技術」,第二時期強調「人、流程」等,第三時期著重「管理」議題等。
    三、 知識管理是一門跨越多學科性質的領域,由高頻次主題語詞分析、共詞分析、階層集群分析與多元尺度法可看出知識管理主題涉及的學科領域,包含資訊學、健康醫學、商業、製造業、公共行政、資訊科學、人工智慧、組織學習、圖書館學、人力資源管理。
    四、 本研究所採用的共詞分析、階層集群分析與多元尺度法等研究方法能夠把分散於各文獻中關於知識管理之主題語詞,經由與其它主題語詞間的關聯,透過統計分類以及二維圖上彼此相對位置的呈現,將相關主題語詞集中在一起。
    五、 文獻內容的主題有時並非很明確地陳述於作者所使用的文字結構中,因此不能由表面的文字直接顯現作者想要表達的主題,而以自然語言為基礎的共詞分析是另一種達到發現文獻內隱知識的方法。
    The study aims at applying co-word techniques in informetrics to knowledge management literature in order to perform in-deepth subject analysis, including exploring frequencies and distribution of subject terms in title and abstract fields of bibliographic data, using high-frequent subject terms as basis for co-word analysis, and applying hierarchical cluster analysis and multi-dimensional scaling to display knowledge managemet thematic map. A total of 2,097 bibliographic data were retrieved from database of Web of Science during 1974-2005 September. The results attemps to view distribution and historical changes of knowledge management-related subjects during the pre-1997, 1998-2001, 2002-2005 in order to realize scholars’ research trend and emerging subjects in academic activities, and intellectual structure of knowledge management and relationships between domains related to knowledge management, and expect to contribute to discovery domains of knowledge managment .
    The results of the study reveal that:
    1. Knowledge management related subjects are complex and scattering.
    2.There were relatively small changes in knowledge management-related subjects from 1974 to 2005. Core subjects of knowledge managment domains in three periods are knowledge, management, information, system(s), approach(es), process(es), development, organization(s), use, technology(ies), model etc. Correlations between subject terms were tightly closer year by year. Research emphasis were put on information technology in the pre-1997, people and process in 1998-2001, as well as management in 2002-2005.
    3.Knowledge management is interdisciplinary domain, which links many disciplines such as informatics, business, manufacturing, health care, public administration, artificial intelligence, organizational learning, library science and information science, human resource management etc.
    4.The study adopts high-frequent words analysis, co-word analysis, hierarchical cluster analysis and multi-dimensional scaling to concentrate subject terms related with knowledge management scattering over all literatures by correlation between subject terms, statistical classification and two dimensional map.
    5. Natural language-based co-word analysis is an apporach to find intrinsic knowledge embedded in documents.
    顯示於類別:[資訊與圖書館學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown248檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋