English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9933232      線上人數 : 18595
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/34081


    題名: 資料探勘技術運用在股市序列樣型技術分析之研究
    其他題名: Applying data mining to analyze sequential patterns in the stock
    作者: 史育英;Shih, Yu-ying
    貢獻者: 淡江大學資訊管理學系碩士班
    李鴻璋;Lee, Hung-chang
    關鍵詞: 資料探勘;時間序列樣型;股價預測;Data Mining;Time Sequential Pattern;Price Forecasting
    日期: 2006
    上傳時間: 2010-01-11 04:54:00 (UTC+8)
    摘要: 本文利用資料探勘技術,來分析台灣股票期貨市場的研究,用過去股市的歷史K線資料建立序列樣型,來預測當日的漲跌,以提供金融投資決策者的參考。股票市場呈現所有投資者決策集合的結果,而投資者的投資行為有其時間關聯性;此投資順序性現象可以利用資料探勘(Data Mining)的技術進行知識的挖掘,尤其資料探勘中的時間序列樣型(Time Sequential Pattern)分析即是用來研究兩件事件前後順序的關係,而近來此項技術演算法有重大的突破,因此採用此一技術來分析股票市場的行為,希望可開展新的研究方向。
    本研究的目的在於歸納台灣股票期貨市場的投資序列特徵,根據過去股票市場的歷史性K線交易資料來探勘出台灣股票期貨市場指數期貨的時間序列樣型相關模式,就是使用資料探勘的技術尋找期貨市場指數期貨中具有特別意義的K線組合序列,是否存在期貨市場開盤後15分鐘的三根五分鐘K線漲跌順序相關組合的特性,並依分析結果找出當天日K線具有預期漲跌幅度的相關特性,據此建構台灣股票期貨市場指數期貨的操作行為模式,以提供投資者作正確的金融投資決策。
    Abstract:
    Our research applies data mining technique to analyze stock and forward market in Taiwan. We build the Time Sequential Pattern by constructing the historical data of Bar-chart (or K-line) of the stock market futures to assist investors` decisions making. The performance of the stock market is the collection of all individuals` decision, and there are some timing relations between their investments. The phenomenon of sequential investment can be studied or explained by using Data Mining technique, especially the Sequential Pattern Analysis. The Sequential Pattern Analysis is used to analyze the sequential relation between two events. The technique has advanced greatly in recent years, so we hope that it would be a new research way by using this technique to analyze the behavior of the stock market.
    The object of this research is to generalize the characteristic of the time sequential pattern of investments in the stock market futures in Taiwan. Based on the historical bar-chart transaction data in the stock market, we mine for the sequential patterns of Taiwan stock exchange capitalization weighted stock index futures; use Data mining technique to discover some bar-chart combination sequence which may construct the behavior model to provide the investors with useful information and to assist them doing the correct decisions making .
    顯示於類別:[資訊管理學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown389檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋