English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49378/84106 (59%)
Visitors : 7376859      Online Users : 103
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/33910


    Title: 依據多項式模式用於分析長期追蹤資料之群序檢定方法
    Other Titles: A group sequential test based on polynomial models for analyzing longitudinal data
    Authors: 任志中;Jen, Chih-chung
    Contributors: 淡江大學統計學系碩士班
    陳怡如;Chen, Yi-ju
    Keywords: IIS性質;線性混合模式;長期追蹤資料;Independent increments structure;Linear mixed model;Longitudinal data
    Date: 2006
    Issue Date: 2010-01-11 04:39:50 (UTC+8)
    Abstract: 一般的群序檢定方法中,每位受測者僅有單一觀察值,所以各階段檢定統計量之間具有IIS(independent increments structure)性質。
    常見的群序檢定方法有Pocock(1977)、O''Brien與Fleming(1979)以及
    Lan與DeMets(1983)等三種方法。然而在長期追蹤資料(longitudinal data)下,每位受測者有重覆測量值,而且這些測量值彼此間具有相關性,因此各階段檢定統計量之間不再具有IIS性質。針對分析重覆測量值或者多重反應變數之資料型態,Armitage等人(1985),Geary(1988),Tang等人(1989)以及Lee與DeMets(1991)分別提出不同的方法。本文將以Lee-DeMets方法為基礎,推廣其線性混合模式概念至多項式趨勢型態,應用二次式檢定統計量進行群序檢定。此外,藉由模擬研究討論各階段檢定統計量之邊際抽樣分配和所有檢定統計量之聯合分配,並使用實例說明其檢定程序。

    關鍵字:IIS性質,線性混合模式,長期追蹤資料。
    Classical group sequential methods are based on the assumption of independent increments structure (IIS) between the interim test statistics. Three common classical group sequential methods are proposed by Pocock(1977), O''Brien and
    Fleming(1979), and Lan and DeMets(1983). However, for longitudinal data the IIS assumption between the interim test statistics does not hold because of the correlation between the measurements from the same subject. Several parametric methods of group sequential test for analyzing the data with repeated measurements or multiple observations have been developed by Armitage et al.(1985), Geary(1988), Tang et al.(1989) and Lee and DeMets(1991). The proposed quadratic form test statistic
    is a generalization of Lee and DeMets'' statistic to polynomial setting. The sampling distributions of the proposed test statistic at each stage as well as the joint
    distribution are discussed by simulation studies. The proposed testing procedure is
    illustrated by a clinical example.
    Appears in Collections:[統計學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    0KbUnknown177View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback