淡江大學機構典藏:Item 987654321/33892
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64188/96967 (66%)
Visitors : 11337328      Online Users : 41
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/33892


    Title: 拔靴後摺刀法在事件研究法之探討與應用
    Other Titles: Jackknife-after-bootstrap methods for event studies
    Authors: 王孝欽;Wang, Hsiao-chin
    Contributors: 淡江大學統計學系碩士班
    林志娟;Lin, Jyh-jiuan
    Keywords: 市場模型;期望報酬率;異常報酬率;檢定力;檢定大小;Market Model;Expected Returns;Abnormal Returns;power;Size
    Date: 2009
    Issue Date: 2010-01-11 04:38:45 (UTC+8)
    Abstract: 事件研究法的實證分析, 在過去已經被廣泛地使用在財務與會計領域上。在日報酬率偏離常態分配的情況下, 一般的有母數檢定方法似乎較易受到質疑, 而過去也有無母數與拔靴的檢定方法來改善檢定力。摺刀法是能改善統計量偏誤的方法, 因此本論文目的是利用一般常用的有母數方法、無母數方法、拔靴法(bootstrap) 與拔靴後摺刀法(jackknife-after-bootstrap)的事件研究法, 以台灣上市(櫃)日報酬資料, 利用模擬方式進行檢定, 並以人工方式增加定量事件期異常報酬率, 比較各種檢定方法的檢定大小及檢定力。本論文研究結果顯示, 在檢定大小落入信賴區間範圍之內的條件下, 拔靴事件研究法與拔靴後摺刀事件研究法之檢定力在增加定量異常報酬率時有較佳的表現。
    Event studies are now in widespread use in the literature of accounting and finance of empirical studies. Many of the event study methods require the normality assumption. However, the stock returns may not be normally distributed, especially for daily returns. To avoid the issue of the normality assumption, the jackknife-after-bootstrapmethods is proposed in this research, which are free from any specific distribution assumption just like bootstrap. Simulations are carried out base on the real daily returns data in Taiwan stock market. The results show that the event studies incorporating the jackknifeafter-bootstrap methods outperform the bootstrap and traditional methods in
    most of the cases in terms of the size and power of the tests.
    Appears in Collections:[Graduate Institute & Department of Statistics] Thesis

    Files in This Item:

    File SizeFormat
    0KbUnknown313View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback