English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64180/96952 (66%)
造訪人次 : 11309318      線上人數 : 8064
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/33891


    題名: 無母數迴歸在稀疏及共線資料下的改進方法之研究
    其他題名: A study of the remedies for nonparametric regression in the presence of sparse and multicollinear design
    作者: 蔡宗洪;Tsai, Tsung-hung
    貢獻者: 淡江大學統計學系碩士班
    鄧文舜;Deng, Wen-shuenn
    關鍵詞: 無母數迴歸;區域線性估計量;區域線性脊迴歸估計量;縮小估計量;插補值的區域線性估計量;交叉比對法;期望積分方差;Nonparametric regression;Local linear estimator;Local linear ridge regression estimator;Shrinkage estimator;Fully imputed local linear estimator;Cross validation;Mean integrated square error
    日期: 2006
    上傳時間: 2010-01-11 04:38:43 (UTC+8)
    摘要: 在隨機取樣(random design)的無母數迴歸(nonparametric regression)分析中,區域線性估計量(local linear estimator)有許多較好的漸近性質,因此較為多數人所稱道;然而在有限樣本場合,若資料稀疏(sparse)或自變數之間有共線性(multicollinearity)的情形之下,區域線性估計量其條件變異數(conditional variance) 沒有上界(unbounded)。為了避免這些情形,因此有許多的改進方法被提出,如Seifert and Gasser(1996)提出的區域線性脊迴歸(local linear ridge regression)方法、Hall and Marron(1997)的縮小(shrinkage)方法以及Chu and Deng(2003)插補值(interpolation method)的區域線性方法。

    本文在討論這些區域線性估計量改進法的比較,並在合理的樣本之下,以交叉比對法(cross validation)來選取各平滑參數(smoothing parameter),來判斷出在實務上,插補值的區域線性的改進法較能得到較低的樣本期望積分方差(sample mean integrated square error),並且在實務上所得出的曲線或曲面也較平滑。
    In the case of the random design nonparametric regression, local linear estimator are an attractive choice due to many asymptotic properties. For the local linear estimator, however, if the data is in the presence of sparse and multicollinear design, it has the problem of unbounded finite sample variance. To overcome the problem, there are many remedies for proposing, such as that the method of the local linear ridge regression by Seifert and Gasser(1996), of shrinking by Hall and Marron(1997), and the interpolation method of local linear estimator by Chu and Deng(2003).

    In this paper, we will compare the above estimator. We also use cross validation idea to select their smoothing parameters to determine that the interpolation method of local linear estimator will get the lower sample mean integrated square error on the practice under the reasonable sample size, and it can get the smoother estimated curve and surface.
    顯示於類別:[統計學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown367檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋