English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64194/96982 (66%)
造訪人次 : 8589321      線上人數 : 6609
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/33890


    題名: 準蒙地羅方法在資產風險值模擬下效率之探討
    其他題名: Quasi-Monte Carlo efficiency in portfolio value-at-risk simulation
    作者: 林敬舜;Lin, Chen-shun
    貢獻者: 淡江大學統計學系碩士班
    林志娟;Lin, Jyh-jiuan
    關鍵詞: 風險值;蒙地卡羅模擬法;準蒙地卡羅模擬法;低差異性數列;Value-at-Risk;Monte Carlo method;Quasi-Monte Carlo Method;Low Discrepancy Sequences
    日期: 2007
    上傳時間: 2010-01-11 04:38:40 (UTC+8)
    摘要: 在金融商品的衡量中,風險值(VaR)成為了近年來大家關注的一項指標。用以了解投資風險以便做好風險的規避。在風險值模擬中,無母數方法裡的蒙地卡羅模擬法(Monte Carlo Method , MC)為電腦隨機抽取的亂數,加入到價格模擬的隨機過程裡,且無任何模型上的假設,故須承擔模型之風險,較能因應市場的變化。但由於電腦隨機抽取的亂數,容易發生亂數聚集性,而影響了估計的穩定性。為改善此問題,在亂數模擬的部份改以低差異性數列去產生亂數值,稱之為準蒙地卡羅模擬法(Quasi-Monte Carlo Method , Q-MC),並舉出常見的兩個低差異性數列Halton數列及Sobol數列。在給定不同的衡量準則下,比較其差異。本文模擬的結果顯示,低差異性數列中之Sobol數列,其亂數本身的差異性小,在低差異數列中為較適合的估計風險值的模擬法,且與風險值真值的差距也是最接近的。有效的改進了傳統蒙地卡羅模擬法的缺點,使應用電腦模擬風險值更為穩定和精確。
    VaR (Value-at-Risk) has been used as an indicator to respond to the market risk and certainly caused a revolution in risk management. It has drawn a lot of attention especially after the Orange County and many others events. Therefore how to estimate the true VaR has become an important issue.
    Monte Carlo method is one of the methods to estimate VaR. It is done by computer simulation. Though it is the most powerful method, Monte Carlo method is always accompanied with lengthy computation time and subject to model risk of stochastic processes assumed. Quasi-Monte Carlo Method can be another alternative method to overcome this efficiency disadvantage by incorporating the Low Discrepancy Sequences in generating random number. Two commonly used sequences, Halton and Sobol, along with naive Monte Carlo Method are used to study the VaR estimation problem in this research.
    It is found that Sobol Sequences of the Low Discrepancy Sequences has smaller MSE and better effientcy among three estimation methods.
    顯示於類別:[統計學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown300檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋