淡江大學機構典藏:Item 987654321/33875
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64191/96979 (66%)
造訪人次 : 8202269      線上人數 : 7620
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/33875


    題名: 利用兩個非常態分配之樣本資料對製程能力指標的估計與比較分析
    其他題名: Some estimations and comparisons for process capability indices based on two non-normal samples.
    作者: 任祥蓉;Jen, Hsiang-jung
    貢獻者: 淡江大學統計學系碩士班
    吳錦全;Wu, Chin-chuan
    關鍵詞: 製程能力指標;非常態分配;Process Capability Indices;Clements' method;Non-normal distribution
    日期: 2008
    上傳時間: 2010-01-11 04:37:23 (UTC+8)
    摘要: 近年來,製程能力指標已被多數的品管工程師廣泛地應用在品質管制方面,以評估製程是否合乎能力水準。然而,工業製造上通常包含許多非常態的製程,所以在使用常態假設下的製程能力指標時,會導致錯誤的結果。基於這個理由,本文利用Clements’ method,針對非常態分配,Lognormal與Inverse Gaussian分配,參數與偏態及峰度之間的關係,探討偏態和峰度的變化對於估計製程能力指標的影響。研究結果顯示,在Lognormal分配下所估計的製程能力指標較Inverse Gaussian分配更具有準確性和精確度。
    In recent years, process capability indices (PCI’s) have been applied in the quality control by most practitioners, that are used to assess the ability of a production process whether is capable. However, industrial production usually involves many non-normal processes, so the use of PCI’s based on an assumption of a normality may yield misleading results. Due to this reason, this article use Clements’ method to calculating estimators of the process capability indices based on two non-normal distributions, Lognormal and Inverse Gaussian distributions. Furthermore, comparing the effect between the variety of skewness and kurtosis with parameters in measuring process capability. The simulation results indicate that the Lognormal distribution is more accurate and precise than the Inverse Gaussian distribution in measuring process capability.
    顯示於類別:[統計學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown389檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋