淡江大學機構典藏:Item 987654321/33859
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9414778      線上人數 : 9366
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/33859


    題名: 以非對稱權重矩陣改善順序型分類器之績效評估指標
    其他題名: Improvement of performance index for ordinal classifiers with asymmetrically weighted cost matrix
    作者: 洪惠萍;Hung, Hui-ping
    貢獻者: 淡江大學統計學系碩士班
    陳景祥;Chen, Ching-hsiang
    關鍵詞: 資料探勘;分類器;判別分析;績效評估指標;順序型類別資料;類神經網路;決策樹;data mining;classifier;discriminant analysis;artificial neural networks;Decision tree
    日期: 2009
    上傳時間: 2010-01-11 04:36:34 (UTC+8)
    摘要: 在順序型類別的分類是實務上很常見的問題,至今有許多專家學者提出針對順序型類別資料的分類器方法,包含許多統計常用的模型和近年來被廣為引用的資料探勘方法。但是,多數分類器所採用的統計模型必須滿足前提假設才能做配適,例如資料必須符合均質性、常態性和獨立性。另一方面,評估分類器所使用的績效評估指標也攸關到最後決定分類器的決策,不恰當的績效評估指標可能會導致最後選擇的分類器效果不佳。本文建議使用加權kappa係數來評估順序型分類器的績效,並利用實際的誤判成本計算出的非對稱權重矩陣做加權,既接近真實情況,又能考慮到預測類別和實際類別的一致性。本文也嘗試將統計常用的線性判別分析與資料探勘中的十個分類方法做比較,以找到分類績效較好的分類器。
    There are many conventional methods to classify ordered data into some specific classes, including statistical methods and data mining. But the use of statistical methods should be based on the assumption of normality, independence and homogeneity. The thesis aims to compare classifiers built with linear discriminant analysis and ten methods of data mining, and found that the further is powerless. Moreover, the performance index used to compare classifiers is related to the precise of decision. An improper performance index may lead to wrong choice of classifiers. The performance index proposed in this thesis is improved from weighted Kappa and considered asymmetrically weighted cost matrix calculated by the cost of misclassification. The results show that the performance index proposed is more credible.
    顯示於類別:[統計學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown342檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋