English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64198/96992 (66%)
Visitors : 7919476      Online Users : 6072
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/33854


    Title: 利用排序集合樣本對柏拉圖分配作貝氏預測區間
    Other Titles: Bayesian predictive interval for the Pareto distribution based on ranked set sample
    Authors: 王顗熒;Wang, Yi-ying
    Contributors: 淡江大學統計學系碩士班
    吳忠武;Wu, Jong-wuu
    Date: 2005
    Issue Date: 2010-01-11 04:36:20 (UTC+8)
    Abstract: 在研究有關產品可靠度方面的問題時,通常需要進行壽命試驗,而在試驗進行當中,常常希望能預測部份尚未發生故障的樣本壽命,以決定是否變更生產計畫或採行其他決策的參考。本文即希望能利用所取得之產品發生故障之排序集合樣本壽命觀測值來預測未來型II 設限樣本產品發生故障之壽命觀測值的貝氏預測區間和平均覆蓋機率,做為評估及改善產品可靠度的依據。
    研究有關產品可靠度方面的文獻,大部分選擇產品壽命分配為指數分配。指數壽命分配適用於失敗率穩定的產品;但是,如果假設每條生產線之產品壽命皆為指數分配具有失敗率 ,而經其生產線產出的產品之失敗率 為隨機變數服從Gamma分配,那麼由此混合母體隨機抽取的生產線之產品,其產品壽命便服從第二類型的柏拉圖分配。
    本文主要探討的分配為柏拉圖分配,以求取未來型II 設限樣本之貝氏預測區間和平均覆蓋機率。其中,第二章是討論其樣本壽命觀測值服從指數分配的排序集合樣本,則樣本壽命觀測值為 的情況之下,分別針對尺度參數已知、尺度和形狀參數皆未知及一般化無資訊的事前分配,求取未來型 設限樣本壽命觀測值的貝氏預測區間和平均覆蓋機率。第三章舉出數值範例,以及利用蒙地卡羅(Monte Carlo)模擬方法以建立給定在 下,求取未來型 設限樣本壽命觀測值的貝氏預測區間和平均覆蓋機率。最後第四章則是結論。
    In the researching of Products’ reliability, the result of life testing is used as the basis for the evaluation and improvement of reliability. During life testing, however, the future observation in an ordered sample is often expected to be predicted so as to determine whether the life testing experiment be redesigned or used as the reference for other decisions.
    In most literatures, the exponential distribution is widely used as a model of lifetime data. The distribution is characterized by a constant failure rate. But in a population of component there could be a ubiquitous variation in failure rate because of small fluctuations in manufacturing tolerances so that a component selected at random can be regarded as belonging to a random subpopulation. Let the lifetime of a particular component have an exponential distribution with failure rate and let the failure rate follow a Gamma distribution, then the failure time of a component selected at random from such a mixed population has a Pareto distribution of the second kind.
    This paper presents that under a ranked set sample from a Pareto distribution, we adopted Bayesian method only based on the only to obtain the prediction intervals of the future Type II censored lifetime observations.
    Appears in Collections:[統計學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    0KbUnknown297View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback