English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64191/96979 (66%)
Visitors : 8153886      Online Users : 7657
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/33853


    Title: 利用右型II設限樣本對柏拉圖分配的未來順序觀測值作貝氏預測
    Other Titles: Bayesian predictive interval for future ordered observation of the Pareto distribution based on the right type II censored samples
    Authors: 余靜媺;Yu, Chin-mei
    Contributors: 淡江大學統計學系碩士班
    吳忠武;Wu, Jong-wuu
    Date: 2005
    Issue Date: 2010-01-11 04:36:17 (UTC+8)
    Abstract: 在研究有關產品可靠度方面的問題時,通常需進行壽命試驗,而在試驗進行當中,常希望能預測部份尚未發生故障的樣本壽命,已決定是否變更生產計畫或採行其他決策的參考。本文即希望能利用所取得產品發生故障之右型II設限樣本壽命觀測值來預測未來產品發生故障之區間,做為評估及改善產品可靠度的依據。
    本文主要探討的是樣本壽命觀測值服從柏拉圖分配的右型II設限樣本 ,以貝氏的論點在給定最後一筆故障觀測值下來求取未來觀測值之預測區間並與Nigm et al. (2003)所提出的方法進行比較。如果 由於人工疏忽導致遺失,那Nigm et al.的方法就不適用;此外,順序觀測值 的條件機率密度函數給定在 並與給定在 的條件密度函數ㄧ致。最後提出數值範例來說明。
    While researching on the reliability of products, usually need to carry on life test. The result of life testing is used as the basis for the evaluation and improvement of reliability. During life testing, the future observations in an ordered sample are often expected to be predictor as to determine whether the production schedule should be altered or adopting other decision of conduct.
    This paper presents that under the right type II censored samples
    from Pareto distribution, adopted Bayesain method only based on the only to obtain the prediction intervals of the future observations and compares with the method proposed by Nigm et al. (2003). If some of are missing since artificial negligence occur, then Nigm et al.’s method may not be an appropriate choice. Moreover, the conditional probability density function of the ordered observation given is equivalent to the conditional p.d.f. of given . Numerical examples are provided to illustrate these results.
    Appears in Collections:[統計學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    0KbUnknown287View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback