淡江大學機構典藏:Item 987654321/33788
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8445148      在线人数 : 7877
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/33788


    题名: 用路人動態擁擠感知行為分析
    其它题名: Analysis of user's dynamic congestion perception and behavior response
    作者: 賴長偉;Lai, Chang-wei
    贡献者: 淡江大學運輸管理學系碩士班
    劉士仙;Liu, Shi-hsien
    关键词: 擁擠指標、劇變理論、習慣量表;Congestion index, catastrophe theory, habit questionnaire
    日期: 2007
    上传时间: 2010-01-11 04:32:51 (UTC+8)
    摘要: 擁擠是路網中常見的交通現象,也是用路人感受最簡易的反應指標,本研究嘗試探討於號誌化幹道上用路人之主觀擁擠感知。透過問卷設計結合習慣量表中之刺激、反應、穩定行為結果,分析用路人主觀心理感知;使用潛在遞變模式建構用路人路段時空因果關係,並結合劇變理論(Catastrophe),探究個體與群體用路人於時間與空間向度上行為之可能變化。最終探討訂定擁擠指標分級主觀感受外,亦能得知資訊可變標誌最適位置的設置,使擁擠指標資訊品質之提升,經由研究實測地點台15線與台北市路網驗證模式,並轉移模式至其它地區。
    Traffic congestion is the most common phenomenon observed on the road network.It is also the simplest indicator to describe the traffic conditions. This study explores the subjectively perceived traffic congestion of the drivers on arterials. To analyze the cause effects of driver’s behavior upon the time and space dimensions, we apply one order SEM (structural equation model) plus Catastrophe theory. To make the outcomes reliable, some well setup methodology of habit questionnaire design is adopted. Not only can the quality of currently used congestion be significantly improved, but also the best locations of congestion information are found. Finally, to test the model transferability, two areas of route 15 and arterials in Taipei city are selected, followed by promising performance evaluation discussed in details.
    显示于类别:[運輸管理學系暨研究所] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    0KbUnknown285检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈