English  |  正體中文  |  简体中文  |  Items with full text/Total items : 52047/87178 (60%)
Visitors : 8689959      Online Users : 291
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/33184

    Title: 針對負二項分配參數建立一些信賴區間之研究
    Other Titles: A study of some of the confidence intervals for a negative binomial parameter
    Authors: 劉宗翰;Liu, Tsung-han
    Contributors: 淡江大學管理科學研究所碩士班
    婁國仁;Lou, Guo-ren
    Keywords: 負二項分配;包含機率;期望長度;信賴區間;貝氏可靠區間;Negative binomial parameter;Coverage probability;Expected length;Confidence Intreval;Bayes credible
    Date: 2008
    Issue Date: 2010-01-11 03:42:53 (UTC+8)
    Abstract: 此篇文章是針對負二項分配參數p做區間估計,是「包含機率」(Coverage Probability),及「信賴區間長度」(Confidence Interval Expected Length),作為評量的一個標準,利用這兩個方法來比較及挑選出何種信賴區間的估計方法最符合我們的要求,期待使包含機率高且期望長度短。
    本文也加入貝氏信賴區間的探討,各做了以無訊息先驗分配(non-informative Prior distribution)及有訊息先驗分配(informative Prior distribution)以貝它(Beta)為先驗的貝氏區間估計。其中以貝它為先驗的分配,做了參數α,β為(a)α=1/2,β=1/2(b)α=1,β=1/2(c)α=5,β=1/2(d)α=10,β=1/2四種的數值模擬。比較出何者呈現的結果最能符合標準。
    This article is providing confidence intervals for a negative binomial
    distribution using Coverage Probability and Confidence Interval Expected Length to be criteria which pick out whose Confidence Interval Expected Length is shorter and Coverage Probability is higher that reach our requirements.
    Many researchers investigated confidence interval for binomial distribution but few researchers studied confidence interval for a negative binomial distribution. We use the method of Clopper-Pearson to find whether parameter p of a negative binomial distribution is in its interval and compare with two different parameters which one is better.
    This article also adds Bayes methods that include non-informative Prior distribution and informative Prior distribution. Therefore, we consider 4 cases of Beta distribution for Prior as follow (a)α=1/2,β=1/2(b)α=1,β=1/2(c)α=5,β=1/2(d)α=10,β=1/2. We try to find a appropriate confidence interval to reach confidence level (1-α) or higher with small sample size.
    Appears in Collections:[管理科學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback