English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49642/84944 (58%)
Visitors : 7698713      Online Users : 53
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/33041


    Title: 二元分佈族及其統計推論
    Other Titles: A family of bivariate distributions with some applications to statistical inferences
    Authors: 邱全宏;Chiu, Chuan-hung
    Contributors: 淡江大學管理科學研究所碩士班
    黃文濤;Huang, Wen-tao
    Date: 2005
    Issue Date: 2010-01-11 03:10:17 (UTC+8)
    Abstract: 在第一章,我們提出了一個新的二元分佈族,並提供一些特殊之分佈,如二元指數、二元韋伯等,同時並與已知的二元分佈族做些比較。對於一些相關之統計性質,如期望值、變異數、故障函數等,及參數的估計也作了探討。並舉一實例,應用動差法,估算出其參數值。
    在第二章,對於S-N曲線的建立提供了另一種統計模式,並估計模型中的參數,同時考慮測量誤差的迴歸模型方法,以導出疲勞極限的分佈。在此分佈下,以迴歸分析法導出參數的估計。此外,亦提出一實際之實驗數據,以本文方法算出參數的估計值,並與已知的結果比較。最後,進行統計模擬研究。
    In chapter 1, we have proposed a new family of bivariate distributions, and also some special distributions such as bivariate exponential, bivariate Weibull etc.. Some comparisons with known results are also made. A real data set is illustrated in which some parameters are estimated by moment method.
    In chapter 2, we consider an error-in-variables regression model for random fatigue-limit problem. Some estimates for the related parameters are also derived. A real data set is also illustrated by the proposed method and some comparisons are also made with known results. Some simulation study is also carried out.
    Appears in Collections:[管理科學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    0KbUnknown162View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback