English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51756/86971 (60%)
Visitors : 8355246      Online Users : 89
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/32970


    Title: 消費者迷的對象、消費行為、產品與廣告代言人選擇關聯性探勘之研究
    Other Titles: A study of association rule implementation on fans, consumer behavior, product and advertisement endorsers
    Authors: 邱瑋亭;Chiu, Wei-ting
    Contributors: 淡江大學管理科學研究所碩士班
    廖述賢;Liao, Shu-hsien
    Keywords: 涉入程度;;消費行為;代言人;資料探勘;關聯法則;集群分析;involvement;fan;consumer behavior;endorser;data mining;association rule;cluster analysis
    Date: 2006
    Issue Date: 2010-01-11 03:03:09 (UTC+8)
    Abstract: 身處在資訊爆炸的時代,每個人的生活週遭都存在著各式各樣的訊息,大至大樓上的大型看版、電視牆,小至路邊的傳單、廣告文宣,在在都揭露著一些要透露給廣大消費者的訊息。對消費者而言,這些各式各樣的廣告媒體,是否有吸引其注意力,讓其進而從事消費活動?對廣告公司而言,要選擇何種廣告媒體,才可以發揮其廣告效果?對廠商而言,要使用什麼樣的代言人,方可吸引消費者的注意力?
    本研究透過關聯式資料庫的建立,在資料探勘技術運用下,建立知識庫,用以協助廠商及廣告公司,找到最適合之產品與代言人的組合及代言人與廣告媒體之組合,使其可以針對其所欲行銷之標的,發揮最大的產品及廣告代言人之效力。
    在本研究中,使用了兩種資料探勘的技術,分別是:關聯法則與集群分析。利用這兩種資料探勘技術,來輔助產品廠商及廣告廠商在代言人的選擇。每一種資料探勘技術都有其特別之功能,企業主可以根據其需求,選擇適合本身目標之工具來輔助;亦可以使用兩種以上的工具來補足各個方法之不足處。惟其必須考量清楚其目的為何。
    In 21st centry, people live around information. All of these advertisement reveal much information to consumer. For consumer, can these advertisement media attract them? For advertisement firms, what kind of media can achieve advertisement effect? For product firms, what kind of endorser can attract consumer’s attention?

    In the study, we set a database and use technique of data mining to build a knowledge database. By the way, to help product firms and advertisement firms find suitable endorsers. Marketing department can use these outcome to make a marketing project and achieve goal. In this study, we use two kinds of data mining’s technique: association rule and cluster analysis.
    Appears in Collections:[管理科學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    0KbUnknown270View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback