English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 10090122      Online Users : 19683
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/32936


    Title: Using regression model on categorical data
    Other Titles: 運用迴歸分析在類別資料
    Authors: 吳兆祥;Wu, Chao-hsiang
    Contributors: 淡江大學數學學系碩士班
    王國徵;Wang, Kui-jang
    Keywords: 類別資料;Categorical data
    Date: 2008
    Issue Date: 2010-01-11 03:00:20 (UTC+8)
    Abstract: 此篇論文分為兩部份,第一個部份是Cochran-Armitage test for a linear trend中檢定H_0:π_i=π對於所有的i=1,..,I,想利用迴歸模型中的簡單線性迴歸(Simple Linear Regression: Y=β_0+β_1X+ε)取代,進而取代H_0:β_1=0; 另一個部份是在非線性模型下,對y去做轉換,並且提供Box-Cox的方法,可以得到轉換後的結果。 再來看是否有需要去對x做轉換,利用Box-Tidwell的方法去判別。
    最後我們在此論文中嘗試去證明出 Pearson Chi-squared 的檢定統計量與迴歸模型中的簡單線性迴歸有相同的結果。並且提供例子與 SAS 相關程式。
    The dissertation is divide into two parts. The first part is in Cochran- Armitage test for a linear trend to test H_0:π_i=π for all i=1,..,I, and wants to use simple linear regression of regression model substitutes. Then to test H_0:β_1=0.
    Another part is under the nonlinear model, makes the transformation on y, and provides Box-Cox method. And obtain the transformation the result. Using the Box-Tidwell method to check whether has the need to transformation on x.
    Finally in this dissertation, we attempt to prove the Pearson Chi-squared test in a view of a simple linear regression model. Also, we have provided some examples and the associatated SAS programs.
    Appears in Collections:[應用數學與數據科學學系] 學位論文

    Files in This Item:

    File SizeFormat
    0KbUnknown423View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback