English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51258/86283 (59%)
Visitors : 8015779      Online Users : 70
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/32933


    Title: Surgery on manifold with positive scalar curvature
    Other Titles: 研究正純曲率流形上之切割理論
    Authors: 許鈴宜;Hsu, Ling-yi
    Contributors: 淡江大學數學學系碩士班
    余成義
    Keywords: 切割;黎曼流形;純曲率;Surgery;Riemannian manifold;Scalar curvature
    Date: 2005
    Issue Date: 2010-01-11 03:00:10 (UTC+8)
    Abstract: 在本篇論文中,我們學習在一個維度大於3的正純曲率流形上執行0-surgery,所得到的新流形也保有距離函數和正純曲率的性質。主要的技巧是要利用一條曲線來建構一個頸狀的管子接上原有的流形,使得這個管子在一開始的部分有原有流形上的距離函數,在最後的部分有 的乘積距離。我們利用Gauss formula得到管子和流形上的截面曲率的關係式,進而得到這兩者間的純曲率關係式。最後我們將此關係式化簡為一個微分方程式,得到此方程式的解,則能保證我們的確可以找到這樣的曲線來建構出這個管子,使得在此管子上保有正純曲率的性質。
    In this thesis, we study the 0-surgery on a manifold M of dimension . The main theorem can be stated in the following way. If obtained from a Riemannian manifold M with positive scalar curvature, ,by performing 0-surgery can still have a metric with positive scalar curvature. The main technique we use is to construct a neck according to a given curve in the way that X has Riemannian metric on M in the beginning and product metric of the form in the end. We using the Gauss formula to simplify the relation of sectional curvature between X and . Then we also has the relation of scalar curvature between X and . Finally, the problem can be reduced to a differential equation. We can find the solution of that differential equation. So that we can construct the curve such that X has positive scalar curvature.
    Appears in Collections:[Graduate Institute & Department of Mathematics] Thesis

    Files in This Item:

    File SizeFormat
    0KbUnknown235View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback